Citation: YU Bo, LIU Ming-Yi, ZHANG Wen-Qiang, ZHANG Ping, XU Jing-Ming. Polarization Loss of Single Solid Oxide Electrolysis Cells and Microstructural Optimization of the Cathode[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 395-402. doi: 10.3866/PKU.WHXB20110214 shu

Polarization Loss of Single Solid Oxide Electrolysis Cells and Microstructural Optimization of the Cathode

  • Received Date: 7 September 2010
    Available Online: 27 December 2010

    Fund Project: 国家自然科学基金(20803039) (20803039)国家科技重大专项(ZX06901-020)资助项目 (ZX06901-020)

  • High temperature steam electrolysis (HTSE),which is the electrolysis of steam at high temperature with high efficiency using planar solid oxide electrolysis cell (SOEC) technology, has received an increasing amount of international interest because of its potential for large-scale hydrogen production using nuclear hydrogen in future. However, it is of great importance to control polarization energy loss and performance degradation for a practical HTSE process. In this paper, the distributions of the polarization resistances of the LSM/YSZ/Ni-YSZ (LSM: Sr doped LaMnO3; YSZ: Y2O3 stabilized ZrO2) cell under a real operating state and using different operating modes were investigated by electrochemical impedance spectroscopy (EIS). We discussed the differences between the SOEC and the solid oxide fuel cell (SOFC) while the steam diffusion process in the cathode support layer of SOEC was determined to be the rate-determining step. Based on the above-mentioned research, the microstructure of the cathode support layer was adjusted and optimized by polymethyl methacrylate (PMMA) pore formers. The results show that the SOEC cell gives much better performance after the optimization. The porosity increased by 50% when PMMA was used. The hydrogen production rate was as high as 328.1 mL·cm-2?h-1 (nominal) when using an electrolysis voltage of 1.3 V, which was about 2 times as that of the starch pore formers. The cell was operated stably for more than 50 h. Our research provides theoretical data and establishes a technical foundation for further study into and application of this novel technology.

  • 加载中
    1. [1]

      (1) Stoots, C. M.; O′Brien, J. E.; Condie, K. G.; Hartvigsen, J. J. Int. J. Hydrog. Energy 2010, 35, 4861.

    2. [2]

      (2) Jensen, S. H.; Sun, X. F.; Ebbesen, S. D., Knibbe, R.; ogensen, M. Int. J. Hydrog. Energy 2010, 35, 9544.

    3. [3]

      (3) Yu, B.; Zhang,W. Q.; Xu, J. M.; Chen, J. Int. J. Hydrog. Energy 2010, 35, 2829.

    4. [4]

      (4) Hino, R.; Haga, K.; Aita, H.; Sekitab, K. Nucl. Eng. Des. 2004, 33, 363.

    5. [5]

      (5) Herring, J. S.; O′Brien, J. E.; Stoots, C. M.; Hawkes, G. L.; artvigsen, J. J.; Shahnam, M. Int. J. Hydrog. Energy 2007, 32, 40.

    6. [6]

      (6) Zhang,W. Q.; Yu, B.; Chen, J.; Xu, J. M. Prog. Chem. 2008, 20, 78.

    7. [7]

      [张文强, 于波, 陈靖, 徐景明. 化学进展, 2008, 20, 78.]

    8. [8]

      (7) Liu, M. Y.; Yu, B.; Chen, J.; Xu, J. M. J. Power Sources 2008, 77, 493.

    9. [9]

      (8) Yildiz, B.; Kazimi, M. S. Int. J. Hydrog. Energy 2006, 31, 77.

    10. [10]

      (9) Stoots, C. M.; O′Brien, J. E.; Herring, J. S.; Hartvigsen, J. J. J. Fuel Cell Sci. Tech. 2009, 6, 011014.

    11. [11]

      (10) Bidrawn, F.; Kim, G.; Corre, G.; Irvine, J. T. S.; Vohs, J. M.; orte, R. J. Electrochem. Solid State Lett. 2008, 11, B167.

    12. [12]

      (11) Shao, Z. P.; Haile, S. M. Nature 2004, 431, 170.

    13. [13]

      (12) Xin, X. S.;Wang, S. R.; Zhu, Q. S.; Xu, Y.;Wen, T. L. Electrochem. Commun. 2010, 12, 40.

    14. [14]

      (13) Wang,W. G.; Mogensen, M. Solid State Ionics 2005, 176, 457.

    15. [15]

      (14) Han, M. F.; Peng, S. P. Solid Oxide Fuel Cell Components and anufacture Processes; Science Press: Beijing, 2004; pp 23-26.

    16. [16]

      [韩敏芳, 彭苏萍. 固体氧化物燃料电池材料及制备. 京: 科学出版社, 2004: 23-26.]

    17. [17]

      (15) Jensen, S. H.; Mogensen, M. Perspectives of High Temperature lectrolysis Using SOEC. 19thWorld Energy Congress: Sydney (AU), 2004.

    18. [18]

      (16) Liang, M. D.; Yu, B.;Wen, M. F.; Chen, J.; Xu, J. M.; Zhai, Y. C. J. Power Sources 2009, 190, 341.

    19. [19]

      (17) Yu, B.; Zhang,W. Q.; Chen, J.; Xu, J. M. Int. J. Hydrog. Energy 2008, 33, 6873.

    20. [20]

      (18) Huang, Q. A.; Hui, R.;Wang, B.W.; Zhang, J. J. Electrochimica Acta 2007, 52, 8144.

    21. [21]

      (19) Sohal, M. S. Degradation in Solid Oxide Cells during High emperature Electrolysis.Workshop on Degradation in Solid xide Electrolysis Cells and Strategies for its Mitigation, hoenix, 2008.


  • 加载中
    1. [1]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    2. [2]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    7. [7]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    10. [10]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    11. [11]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    12. [12]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    13. [13]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    14. [14]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    17. [17]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    18. [18]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(1768)
  • Abstract views(2437)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return