Citation: LAO Chun-Feng, CHU Zeng-Ze, ZOU De-Chun. Self-Assembly of 3-Aminopropyltrimethoxysilane to Improve the Efficiency of Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 419-424. doi: 10.3866/PKU.WHXB20110209 shu

Self-Assembly of 3-Aminopropyltrimethoxysilane to Improve the Efficiency of Dye-Sensitized Solar Cells

  • Received Date: 13 September 2010
    Available Online: 22 December 2010

    Fund Project: 国家自然科学基金(50125310, 90401028) (50125310, 90401028)国家重点基础研究发展规划项目(973) (2002CB613405)资助 (973) (2002CB613405)

  • A dye-sensitized solar cell (DSSC) based on a 3-aminopropyltrimethoxysilane (APTS)- modified TiO2 electrode was fabricated. This cell generated a short current of 18.32 mA·cm-2, an open voltage of 775.9 mV, and its overall photo-to-electricity conversion efficiency was 9.15% under 100 mW·cm-2 white light irradiation from a xenon lamp. The three DSSC parameters for the bare TiO2 electrode were found to be 18.08 mA·cm-2, 749.9 mV, and 7.70%. Compared with the unmodified solar cell, the overall conversion efficiency improved by 18.8% and the fill factor improved from 0.57 to 0.64. This improvement is attributed to the inhibition of the back reaction at the interface between the semiconductor and the electrolyte. The dark current-applied voltage curve shows that the onset voltage shifts from -0.30 to -0.40 V, which indicates a reduction in defects and surface states on the TiO2 surface because of the presence of APTS. Furthermore, special experiments were conducted to investigate the interaction among TiO2, APTS, and the cis-Ru(dcpyH2)2(SCN)2 dye. In these experiments, APTS and the dye were self- assembled onto a TiO2 electrode in layers. The interaction was characterized by X-ray photoelectron spectroscopy (XPS). Qualitative and quantitative results showed that the ―OCH2CH3 was partially removed and it formed mono-bridge or bi-bridge Si―O―Ti bonds. The cis-Ru(dcpyH2)2(SCN)2 dye adsorbed onto APTS through an electrostatic interaction between ―COOH and ―NH2 from the dye. FT-IR spectra further confirmed this inner interaction.

  • 加载中
    1. [1]

      (1) O′Regan, B.; Gr?tzel, M. Nature 1991, 353, 737.

    2. [2]

      (2) Nazeeruddin, M. K.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gr?tzel, M. J. Am. Chem. Soc. 1993, 115, 6382.

    3. [3]

      (3) Keis, K.; Bauer, C.; Boschloo, G.; Hagfeldt, A.;Westermark, K.; ensmo, H.; Siegbahn, H. J. Photochem. Photobio. A 2002, 148, 7.

    4. [4]

      (4) Stergiopoulos, T.; Arabatzis, I. M.; Cachet, H.; Falaras, P. J. Photochem. Photobio. A 2003, 155, 163.

    5. [5]

      (5) Fitzmaurice, D. J.; Frei, H. Langmuir 1991, 7, 1129.

    6. [6]

      (6) Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; rakawa, H. Sol. Energy Mater. Sol. Cells 2000, 64, 115.

    7. [7]

      (7) Heimer, T. A.; D′Arcangelis, S. T.; Farzad, F.; Stipkala, J. M.; eyer, G. J. Inorg. Chem. 1996, 35, 5319.

    8. [8]

      (8) Nüesch, F.; Moser, J. E.; Shklover, V.; Grätzel, M. J. Am. Chem. Soc. 1996, 118, 5420

    9. [9]

      (9) Hagfeldt, A.; Gr?tzel, M. Chem. Rev. 1995, 95, 49.

    10. [10]

      (10) Peter, L. M.;Wijayantha, K. G. U. Electrochem. Commun. 1999, 1, 576.

    11. [11]

      (11) Rensmo, H.; Lindstrom, H.; Sodergren, S.;Willstedt, A. K.; olbrand, A.; Hagfeldt, A.; Lindquist, S. E. J. Electrochem. Soc. 1996, 143, 3173.

    12. [12]

      (12) Wang, Z. S.; Huang, C. H.; Huang, Y. Y.; Hou, Y. J.; Xie, P. H.; hang, B.W.; Cheng, H. M. Chem. Mater. 2001, 13, 678.

    13. [13]

      (13) Kay, A.; Gr?tzel, M. Chem. Mater. 2002, 14, 2930.

    14. [14]

      (14) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. 2003, 125, 475.

    15. [15]

      (15) Zhang, L.; Ren, Y. J.; Cai, S. M. Electrochemistry 2002, 8, 27. 张莉, 任焱杰, 蔡生民. 电化学, 2002, 8, 27.]

    16. [16]

      (16) Yang, S. M.; Kou, H. Z.;Wang, L.;Wang, H. J.; Fu,W. H. Acta Phys. -Chim. Sin. 2009, 25, 1219.

    17. [17]

      [杨术明, 寇慧芝, 汪玲, 红军, 付文红. 物理化学学报, 2009, 25, 1219.]

    18. [18]

      (17) Decher, G. Science 1997, 277, 1232.

    19. [19]

      (18) Lee, C. H.; Lin, T. S.; Mou, C. Y. J. Phys. Chem. B 2003, 107, 543.

    20. [20]

      (19) Mukhopadhyay, K.; Phadtare, S.; Vinod, V. P.; Kumar, A.; Rao, .; Chaudhari, R. V.; Sastry, M. Langmuir 2003, 19, 3858.

    21. [21]

      (20) Kominami, H.; Itonaga, M.; Shinonaga, A.; Kagawa, S.; onishi, S.; Kera, Y. Stu. Sur. Sci. Cat. 2002, 143, 1089.

    22. [22]

      (21) Lao. C. F. Researches on the Efficiency of Dye-Sensitized Solar ells. Ph.D. Dissertation, Peking University, Beijing, 2006.

    23. [23]

      [劳 峰. 染料敏化太阳能电池效率问题的研究

    24. [24]

      [D]. 北京: 北京大 , 2006.]

    25. [25]

      (22) Zhang, J.; Yang, G. T.; Sun, Q.; Zheng J.;Wang, P. Q.; Zhu, Y. J.; Zhao, X. Z. J. Ren. Sust. Energy 2010, 013104.

    26. [26]

      (23) Lao, C. F.; Chuai, Y. T.; Su, L.; Liu, X.; Huang, L.; Cheng, H. M.; Zou, D. C. Sol. Energy Mater. Sol. Cells 2004, 85, 457.

    27. [27]

      (24) Rosenblut, M. L.; Lewis, N. S. J. Phys. Chem. 1989, 93, 3735.

    28. [28]

      (25) Kumer, A.; Santangelo, P. G.; Lewis, N. S. J. Phys. Chem. 1992, 6, 835.

    29. [29]

      (26) Moser, J.; Punchihewa, S.; Infelta, P. P.; Gr?tzel, M. Langmuir 1991, 7, 3012.

    30. [30]

      (27) Nazeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Gr?tzel, M. J. Phys. Chem. B 2003, 107, 8981.

    31. [31]

      (28) Rensmo, H.;Westermark, K.; S?dergren, S.; Kohle, O.; Persson, P.; Lunell, S.; Siegbahn, H. J. Chem. Phys. 1999, 111, 2744.

    32. [32]

      (29) Westermark, K.; Rensmo, H.; Lees, A. C.; Vos, J. G.; Siegbahn, H. J. Phys. Chem. B 2002, 106, 10108.

    33. [33]

      (30) Chang, C. C.; Chen,W. C. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 3419.

    34. [34]

      (31) Bertrand, P. T.; Jonas, A.; Laschewsky, A.; Legras, R. Macromol. Rapid. Commun. 2000, 21, 319.

    35. [35]

      (32) Kumar, A.; Mandale, A. B.; Sastry, M. Langmuir 2000, 16, 6921.

    36. [36]

      (33) Jarrais, B.; Silva, A. R.; Freire, C. Eur. J. Inorg. Chem. 2005, 582.

    37. [37]

      (34) Noh, J.; Ito, E.; Nakajima, K.; Kim, J.; Lee, H.; Hara, M. J. Phys. Chem. B 2002, 106, 7139.

    38. [38]

      (35) Lin, J.; Siddiqui, J. A.; Ottenbrite, R. M. Polym. Adv. Technol. 2001, 12, 285.

    39. [39]

      (36) Ara , A. C.; Johnson, L. R.; Bliznyuk, V. N.; Schlesinger, Z.; arter, S. A.; H?rhold, H. H. Adv. Mater. 2000, 12, 1689.


  • 加载中
    1. [1]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    7. [7]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    8. [8]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    11. [11]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    17. [17]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    18. [18]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    19. [19]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    20. [20]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(1642)
  • Abstract views(3417)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return