Citation: LI Jin-Hua, LIU Bao-Zhong, HAN Shu-Min, HU Lin, ZHU Xi-Lin, WANG Ming-Zhi. Phase Structure and Hydrogen Storage Properties of LaMg8.40Ni2.34 Alloy[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 403-407. doi: 10.3866/PKU.WHXB20110206 shu

Phase Structure and Hydrogen Storage Properties of LaMg8.40Ni2.34 Alloy

  • Received Date: 20 October 2010
    Available Online: 21 December 2010

    Fund Project: 国家高技术研究发展计划(863)(2007AA05Z117) (863)(2007AA05Z117) 国家自然科学基金(50971112, 51001043) (50971112, 51001043) 博士后科学基金(20100470990) (20100470990)河北省自然科学基金(E2010001170)资助项目 (E2010001170)

  • The LaMg8.40Ni2.34 alloy was prepared by vacuum induction melting and subsequent heating treatment. The phase structure, morphology, and hydrogen storage properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and pressure-composition-temperature (PCT) measurements. The LaMg8.40Ni2.34 alloy was composed of La2Mg17, LaMg2Ni, and Mg2Ni phases. The alloy can be activated in the first hydriding/dehydriding process. Its reversible hydrogen storage capacity was 3.01% (mass fraction) at 558 K. PCT curves showed two hydriding plateaus corresponding to the formation of MgH2 and Mg2NiH4 and only one dehydriding plateau, which is due to the synergetic effect of hydrogen desorption between MgH2 and Mg2NiH4. The activation energy values of LaMg8.40Ni2.34 alloy were (52.4±0.4) and (59.2±0.1) kJ·mol-1 for the hydriding and dehydriding processes, respectively, and these were lower than that of the Mg2Ni alloy. The LaMg8.40Ni2.34 alloy exhibited od activation behavior, hydrogen adsorption and desorption reversibility, and kinetic properties.

  • 加载中
    1. [1]

      (1) Schlapbach, L.; Zuettel, A. Nature 2001, 414, 353.

    2. [2]

      (2) Zhu, M.; Peng, C. H.; Ouyang, L. Z.; Tong, Y. Q. J. Alloys. Compd. 2006, 426, 316.

    3. [3]

      (3) Chio, M. D.; Ziggiotti, A.; Baricco, M. Intermetallics 2008, 16, 02.

    4. [4]

      (4) Song, X. P.; Zhang, P. L.; Pei, P.; Liu, J.; Li, R. C.; Chen, G. L. Int. J. Hydrog. Energy 2010, 35, 8080.

    5. [5]

      (5) Palade, P.; Sartori, S.; Maddalena, A.; Principi, G.; S. Russo, L.; azarescu, M.; Schinteie, G.; Kuncser, V.; Filoti, G. J. Alloys. Compd. 2006, 415, 170.

    6. [6]

      (6) Liu, Z. Y.;Wang, E.; Lei, Z. L. J. Alloy. Compd. 2007, 431, 212.

    7. [7]

      (7) Muthukumara, P.; Maiya, M. P.; Murthy, S. S.; Vijay, R.; undaresan, R. J. Alloy Compd. 2008, 452, 456.

    8. [8]

      (8) Sakintunaa, B.; Lamari-Darkimb, F.; Hirscherc, M. Int. J. Hydrog. Energy 2007, 32, 1121.

    9. [9]

      (9) Friedlmeie, R. G.; Arakawa, M.; Hirai, T.; Akiba, E. J. Alloy. Compd. 1999, 292, 101.

    10. [10]

      (10) Zhang, Y.; Li, B.; Ren, H.; Guo, S.;Wu, Z.;Wang, X. Int. J. Hydrog. Energy 2009, 34, 2684.

    11. [11]

      (11) Li, Q.; Chou, K. C.; Xu, K.; Jiang, L. J.; Lin, Q.; Lin, G.; Lu, X.; Zhang, J. Int. J. Hydrog. Energy 2006, 31, 497.

    12. [12]

      (12) Ouyang, L. Z.; Yao, L.; Dong, H.W.; Li, L. Q.; Zhu, M. J. Alloy. Compd. 2009, 485, 507.

    13. [13]

      (13) Hu, L.; Han, S. M.; Li, J. H.; Yang, C.; Li, Y.;Wang, M. Z. Mater. Sci. Eng. B 2010, 166, 209.

    14. [14]

      (14) Ren, H.; Zhang, Y.; Li, B.; Zhao, D.; Guo, S.;Wang, X. Int. J. Hydrog. Energy 2009, 34, 1429.

    15. [15]

      (15) Xie, D. H.; Li, P.; Zeng, C. X.; Sun, J.W.; Qu, X. H. J. Alloy. Compd. 2009, 478, 96.

    16. [16]

      (16) Zaluska, A.; Zaluski, L.; Str?m-Olsen, J. O. J. Alloys Compd., 1999, 289, 197.

    17. [17]

      (17) Blomqvist, H.; R?nnebro, E.; Noréus, D.; Kuji, T. J. Alloy. Compd. 2002, 330-332, 286.

    18. [18]

      (18) Taizhang, D. The Properties and Application on Metal-Hydride. Jap. Pat. ISBN4-900041-72-6, 1999.

    19. [19]

      (19) Ouyang, L. Z.; Yang, X. S.; Dong, H.W.; Zhu, M. Scripta Mater. 2009, 61, 339.

    20. [20]

      (20) Li, Q.; Chou, K. C.; Lin, Q.; Jiang, L. J.; Zhan, F. Int. J. Hydrog. Energy, 2004, 29, 843.

    21. [21]

      (21) Li, Q.; Chou, K. C.; Lin, Q.; Jiang, L. J.; Zhan, F. Int. J. Hydrog. Energy 2004, 29, 1383.

    22. [22]

      (22) Cui, X. Y.; Li, Q.; Chou, K. C.; Chen, S. L.; Lin, G.W.; Xu, K. D. Intermetallics 2008, 16, 662.

    23. [23]

      (23) Mi, J.; Liu, X. P.; Li, Y.; Jiang, L. J.; Li, Z. N.; Huang, Z.;Wang, S. M. J. Rare Earths 2009, 27, 154.

    24. [24]

      (24) Kalinichenka, S.; Rontzsch, L.; Kieback, B. Int. J. Hydrog. Energy 2009, 34, 7749.

    25. [25]

      (25) Li, Z. N.; Jiang, L. J.; Liu, X. P.;Wang, S. M.; Li, H. L.; Zhan, F. J. Chin. Rare Earth Soc. 2008, 26, 624.

    26. [26]

      [李志念, 蒋利军, 晓鹏, 王树茂, 李华玲, 詹峰. 中国稀土学报, 2008, 26, 24.]


  • 加载中
    1. [1]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    3. [3]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    4. [4]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    7. [7]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    8. [8]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    9. [9]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    11. [11]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    12. [12]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    15. [15]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    17. [17]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    19. [19]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    20. [20]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

Metrics
  • PDF Downloads(1171)
  • Abstract views(3215)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return