Citation:
LIU Chong, DU Rui, ZHAO Yan-Ying, WANG Hui-Gang, ZHENG Xu-Ming. Resonance Raman Spectroscopy of the Excited State Structural Dynamics of 6-N,N-Dimethyladenine[J]. Acta Physico-Chimica Sinica,
;2011, 27(01): 17-24.
doi:
10.3866/PKU.WHXB20110132
-
The A- and B-band electronic excitations and the excited state structural dynamics of 6-N,N-dimethyladenine (DMA) were studied by resonance Raman spectroscopy and density functional theory calculations. The πH→πL* transition is the main part of the A-band absorption and its calculated oscillator strength occupies 79% of the A-band absorption. n→Ryd and πH→Ryd transitions where Ryd denotes the diffuse Rydberg orbital play important roles in the B-band electronic transitions and their calculated oscillator strengths occupy about 62% of the B-band absorption. The oscillator strength for the πH→πL* transition, which dominates the A-band electronic transition only occupies about 33% of the B-band absorption. The foundamental vibrations of the purine ring deformation stretch plus the C8H/N9H bend mode ν23 and the 5 member ring deformation stretch plus the C8H bend mode ν13, and their overtones and combination bands occupy most of the A-band resonance Raman intensities. Therefore, the 1πHπL* excited state structural dynamics of DMA is mainly along the ν23 and ν13 reaction coordinates. The majority of the B-band resonance Raman intensities are dominated by the fundamental vibrations of ν10, ν29, ν21, ν26, ν40, and their overtones and combination bands. This suggests the B-band excited state structural dynamics of DMA is mostly along the purine ring deformation, the C6N10 stretch, the N9H/C8H/C2H bend and the N(CH3)2 antisymmetric stretch. The appearance of ν26 and ν12 in the A-band resonance Raman spectrum is correlated to the Franck-Condon region 1nπ*/1ππ* conical intersection. The activation of ν21 in the B-band resonance Raman spectrum is correlated to the Franck-Condon region 1ππ*/1πσN9H* conical intersection.
-
-
-
[1]
1 Crespo-Hemández, C. E.; Cohen, B.; Hare, P. M.; Kohler, B. Chem. Rev., 2004, 104: 1977
-
[2]
2 Sobolewski, A. L.; Domcke,W.; Dedonder-Lardeux, C.; Jouvet, C. Phys. Chem. Chem. Phys., 2002, 4: 1093
-
[3]
3 Perun, S.; Sobolewski, A. L.; Domcke,W. J. Am. Chem. Soc., 2005, 127: 6257
-
[4]
4 Perun, S.; Sobolewski, A. L.; Domcke,W. Chem. Phys., 2005, 313: 107
-
[5]
5 Kang, H.; Jung, B.; Kim, S. K. J. Chem. Phys., 2003, 118: 6717
-
[6]
6 Canuel, C.; Mons, M.; Piuzzi, F.; Tardivel, B.; Dimicoli, I.; Elhanine, M. J. Chem. Phys., 2005, 122: 074306
-
[7]
7 Samoylova, E.; Lippert, H.; Ullrich, S.; Hertel, I. V.; Radloff,W.; Schultz, T. J. Am. Chem. Soc., 2005, 127: 1782
-
[8]
8 Wells, K. L.; Roberts, G. M.; Stavros, V. G. Chem. Phys. Lett., 2007, 446: 20
-
[9]
9 Wells, K. L.; Hadden, D. J.; Nix, M. G. D.; Stavros, V. G. J. Phys. Chem. Lett., 2010, 1: 993
-
[10]
10 Zierhut, M.; Roth,W.; Fischer, I. Phys. Chem. Chem. Phys., 2004, 6: 5178
-
[11]
11 Satzger, H.; Townsend, D.; Zgierski, M. Z.; Patchovskii, S.; Ullrich, S.; Stolow, A. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 10196
-
[12]
12 Nix, M. G. D.; Devine, A. L.; Cronin, B.; Ashfold, M. N. R. J. Chem. Phys., 2007, 126: 124312
-
[13]
13 Ullrich, S.; Schultz, T.; Zgierski, M. Z.; Stolow, A. Phys. Chem. Chem. Phys., 2004, 6: 2796
-
[14]
14 Ullrich, S.; Schultz, T.; Zgierski, M. Z.; Stolow, A. J. Am. Chem. Soc., 2004, 126: 2262
-
[15]
15 Ritze, H. H.; Lippert, H.; Samoylova, E.; Smith, V. R.; Hertel, I. V.; Radloff,W.; Schultz, T. J. Chem. Phys., 2005, 122: 224320
-
[16]
16 Longworth, J.W.; Rahn, R. O.; Shulman, R. G. J. Chem. Phys., 1966, 45: 2930
-
[17]
17 Wilson, R.W.; Callis, P. R. Photochem. Photobiol., 1974, 20: 345
-
[18]
18 Eastman, J.W. Ber. Bunsen-Ges. Phys. Chem., 1969, 75: 407
-
[19]
19 Parusel, A. B. J.; Rettig,W.; Rotkiewicz, K. J. Phys. Chem. A, 2002, 106: 2293
-
[20]
20 Schwalb, N. K.; Temps, F. Phys. Chem. Chem. Phys., 2006, 8: 5229
-
[21]
21 Li, S. P.;Wu, G. M.; Zheng, X. M. Chem. J. Chin. Univ., 2004, 25: 1495
-
[22]
[李少鹏, 吴光明, 郑旭明. 高等学校化学学报, 2004, 25: 1495]
-
[23]
22 Myer, A. B.; Li, B.; Ci, X. J. Chem. Phys., 1988, 89: 1876
-
[24]
23 Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.02. Pittsburgh, PA: Gaussian Inc., 2003
-
[25]
24 Sadlej-Sosnowska, N.; Kry wski, T. M. Chem. Phys. Lett., 2009, 476: 191
-
[26]
25 Rauhut, G.; Pulay, P. J. Phys. Chem., 1995, 99: 3091
-
[27]
26 Marian, C. M. J. Chem. Phys., 2005, 122: 104314
-
[28]
27 Foresman, J. B.; Keith, T. A.;Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J. Phys. Chem., 1996, 100: 16098
-
[29]
28 Wu, X. F.; Zheng X.;Wang, H. G.; Zhao, Y.Y.; Guan X. G.; Phillips, D. L.; Chen, X. B.; Fang,W. H. J. Chem. Phys., 2010, 133: 134507
-
[30]
29 Conti, I.; Garavelli, M.; Orlandi, G. J. Am. Chem. Soc., 2009, 131: 16118
-
[1]
-
-
-
[1]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[2]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027
-
[3]
Yufan ZHAO , Jinglin YOU , Shixiang WANG , Guopeng LIU , Xiang XIA , Yingfang XIE , Meiqin SHENG , Feiyan XU , Kai TANG , Liming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063
-
[4]
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
-
[5]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[6]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[7]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[8]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[9]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[10]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[11]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[12]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[13]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[14]
Xiaoyang Li , Xiaowei Huang , Yimeng Zhang , Huan Liu , Shao Jin , Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035
-
[15]
Qi Wu , Changhua Wang , Yingying Li , Xintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107
-
[16]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[17]
Ximeng CHI , Jianwei WEI , Yunyun WANG , Wenxin DENG , Jiayi DAI , Xu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401
-
[18]
Lifang HE , Wenjie TANG , Yaoze LUO , Mingsheng LIANG , Jianxin TANG , Yuxuan WU , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012
-
[19]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[20]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[1]
Metrics
- PDF Downloads(1208)
- Abstract views(2784)
- HTML views(7)