Citation: ZHANG Qi-Bo, HUA Yi-Xin. Effect of the Ionic Liquid Additive-[BMIM]HSO4 on the Kinetics of Oxygen Evolution during Zinc Electrowinning[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 149-155. doi: 10.3866/PKU.WHXB20110126 shu

Effect of the Ionic Liquid Additive-[BMIM]HSO4 on the Kinetics of Oxygen Evolution during Zinc Electrowinning

  • Received Date: 30 September 2010
    Available Online: 8 December 2010

    Fund Project: 国家自然科学基金(50864009, 50904031) (50864009, 50904031)高等学校博士学科点专项科研基金(20070674001)资助项目 (20070674001)

  • The effect of the ionic liquid additive 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM] HSO4) on the kinetics of oxygen evolution during zinc electrowinning from an acidic sulfate solution was investigated. We used potentiodynamic polarization, electrochemical impedance spectroscopy, scanning electron microscopy, and X-ray diffraction for this study. Potentiodynamic polarization curves and the corresponding kinetic parameter analysis show that [BMIM]HSO4 has a catalytic effect on oxygen evolution by stimulating the reaction rate constant. Impedance data reveal that [BMIM]HSO4 can markedly reduce the oxygen evolution charge transfer resistance. The addition of 5 mg·L-1 [BMIM]HSO4 obviously decreased the resistance value by at least 50% over the studied potential range from 1.85 to 2.10 V. In addition, the results of the impedance measurements also suggest an inhibition effect of [BMIM]HSO4 on the secondary reactions and this is due to the adsorption of the additive on the anode surface, which decreased the amount of active sites for anion adsorption. All electrochemical results were corroborated with a morphological and orientation analysis of the anodic surface after 120 h of anodic polarization. The addition of [BMIM]HSO4 inhibited the generation of the intermediate product β-PbO2 and it promoted the generation of larger, loose, and porous α-PbO2, which benefited the oxygen evolution reaction.

  • 加载中
    1. [1]

      1 Petrova, M.; Noncheva, Z.; Dobrev, T.; Rashkov, S.; Kounchev, N.; Petrov, D.; Vlaev, S.; Mihnev, V.; Zarev, S.; Georgieva, L.; Buttinelli, D. Hydrometallurgy, 1996, 40: 293

    2. [2]

      2 Ivanov, I.; Stefanov, Y.; Noncheva, Z.; Petrova, M.; Dobrev, T.; Mirkova, L.; Vermeersch, R.; Demaerel, J. P. Hydrometallurgy, 2000, 57: 109

    3. [3]

      3 Felder, A.; Prengaman, R. D. Journal of the Minerals, Metals and Material Society, 2006, 58: 28

    4. [4]

      4 Jiang, L. X.; Zhong, S. P.; Lai, Y. Q.; Lü, X. J.; Hong, B.; Peng, H. J.; Zhou, X. Y.; Li, J.; Liu, Y. X. Acta Phys. -Chim. Sin., 2010, 26: 2369

    5. [5]

      [蒋良兴, 衷水平, 赖延清, 吕晓军, 洪波, 彭红建, 周向阳, 李劼, 刘业翔. 物理化学学报, 2010, 26: 2369]

    6. [6]

      5 Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lü, X. J.; Peng, H. J.; Liu, Y. X. Hydrometallurgy, 2010, 102: 73

    7. [7]

      6 Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lü, X. J.; Peng, H. J.; Liu, Y. X. Hydrometallurgy, 2010, 102: 81

    8. [8]

      7 Pavlov, D.; Rogachev, T. Electrochim. Acta, 1986, 31: 241

    9. [9]

      8 Rashkov, S.; Dobrev, T.; Noncheva, Z.; Stefanov, Y.; Rashkova, B.; Petrova, M. Hydrometallurgy, 1999, 52: 223

    10. [10]

      9 Lupi, C.; Pilone, D. Hydrometallurgy, 1997, 44: 347

    11. [11]

      10 Siegmund, A.; Prengaman, R. D.; Dutrizac, J. E. Lead-Zinc 2000

    12. [12]

      [C].//Dutrizac, J. E.Warrendale. PA: TMS, 2000: 589-597

    13. [13]

      11 Newnham, R. H. J. Appl. Electrochem., 1992, 22: 116

    14. [14]

      12 Zhong, S. P.; Lai, Y. Q.; Jiang, L. X.; Tian, Z. L.; Li, J.; Liu, Y. X. Chin. J. Process Eng., 2008, 8: 289

    15. [15]

      [衷水平, 赖延清, 蒋良兴, 田忠良, 李劫, 刘业翔. 过程工程学报, 2008, 8: 289]

    16. [16]

      13 Lai, Y. Q.; Zhong, S. P.; Jiang, L. X.; Lü, X. J.; Chen, P. R.; Li, J.; Liu, Y. X. J. Cent. South Uuiv. Tech., 2009, 16: 236

    17. [17]

      14 Petrova, M.; Stefanov, Y.; Noncheva, Z.; Dobrev, T.; Rashkov, S. British Corrosion Journal, 1999, 34: 198

    18. [18]

      15 Pavlov, D. Electrochim. Acta, 1978, 23: 845

    19. [19]

      16 Pavlov, D.; Dinev, Z. J. Electrochem. Soc., 1980, 127: 855

    20. [20]

      17 Yamamoto, Y.; Fumino, K.; Ueda, T.; Nambu, M. Electrochim. Acta, 1992, 37: 199

    21. [21]

      18 Ruetchi, P.; Cahan, B. D. J. Electrochem. Soc., 1957, 104: 406

    22. [22]

      19 Burbank, J. J. Electrochem. Soc., 1959, 106: 369

    23. [23]

      20 Paunovic, M.; Schlesinger, M. Fundamental of electrochemical deposition. 2nd ed. New York: JohnWilley & Sons Inc. Publication, 2006: 177-198

    24. [24]

      21 Saba, A. E.; Elsherief, A. E. Hydrometallurgy, 2000, 54: 91

    25. [25]

      22 Afifi, S. E.; Ebraid, A. R. Journal of the Minerals, 1992, 1: 32

    26. [26]

      23 Chapman, T.W.; Yen, S. C. Anode depolarisation in electrowinning

    27. [27]

      [C]. AIME Meeting, Las Vegas, No., 1980

    28. [28]

      24 2 Zhang, Q. B.; Hua, Y. X. J. Appl. Electrochem., 2009, 39: 261

    29. [29]

      25 Zhang, Q. B.; Hua, Y. X.;Wang, Y. T.; Lu, H. J.; Zhang, X. Y. Hydrometallurgy, 2009, 98: 291

    30. [30]

      26 Whitehead, J. A.; Lawrance, G. A.; McCluskey, A. Aust. J. Chem., 2004, 57: 151

    31. [31]

      27 Rerolle, C.;Wiart, R. Electrochim. Acta, 1995, 40: 939

    32. [32]

      28 Cachet, C.; Rerolle, C.;Wiart, R. Electrochim. Acta, 1996, 41: 83

    33. [33]

      29 Cachet, C.; Pape-Rerolle, C. L. E.;Wiart, R. J. Appl. Electrochem., 1999, 29: 813

    34. [34]

      30 Berube, L. P.; Piron, D. J. Electrochem. Soc., 1987, 134: 562

    35. [35]

      31 Katz, E. R.; Stucki, S. J. Electroanal. Chem., 1987, 228: 407

    36. [36]

      32 Ruetschi, P.; Cahan, B. D. J. Electrochem. Soc., 1958, 105: 369

    37. [37]

      33 Lappe, F. J. Phys. Chem. Solid., 1962, 23: 1563


  • 加载中
    1. [1]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    2. [2]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    3. [3]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    6. [6]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    7. [7]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    10. [10]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    11. [11]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    12. [12]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    16. [16]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    17. [17]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    18. [18]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(1387)
  • Abstract views(3262)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return