Citation: LIU Jia, ZHANG Wei-Min, HUANG Pei-Pei, FAN Jia-Ni, SUN Ren-Gui, SUN Zhong-Xi. Surface Complexation Reactions in a Mixed α-Fe2O3,γ-Al2O3 and SiO2 Suspension[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 186-192. doi: 10.3866/PKU.WHXB20110115 shu

Surface Complexation Reactions in a Mixed α-Fe2O3,γ-Al2O3 and SiO2 Suspension

  • Received Date: 12 July 2010
    Available Online: 29 November 2010

    Fund Project: 国家自然科学基金(20677022, 50874052)资助项目 (20677022, 50874052)

  • We systematically studied the surface acid-base properites and complexation behavior of heavy metal ions in aqueous suspensions of α-Fe2O3, γ-Al2O3, SiO2 of mixed oxides and the α-Fe2O3/γ-Al2O3/ SiO2 mixed systems using potentiometric titrations in combination with computer-based calculations using the constant capacitance model (CCM). The experimental and calculated results reveal that the surface chemical reactions in the mixed system are quite different from the sum of the individual single systems. A complicated mutual interaction exists among these mineral surfaces. The surface chemical reaction models and relevant equilibrium constants in the mixed system are: ≡XOH2+?≡XOH+H+(lgKa1=-4.23), ≡XOH?≡XO-+H+(lgKa2=-8.41). The surface complexation model and related equilibrium constants for Cu2+, Pb2+, and Zn2+ in the mixed system can be described by following reaction: ≡XOH+M2+ ?≡XOM++H+, with lgK of -2.20, -1.90, -3.20 for Cu2+, Pb2+, Zn2+, respectively.

  • 加载中
    1. [1]

      1. Ma, T. Y.; Zhang, X. J.; Yuan, Z. Y. J. Phys. Chem. C, 2009, 113(29): 12854

    2. [2]

      2. Zhang, Y.; Zhang,W. M.; Sun, Z. X. Progress in Chemistry, 2007, 19(10): 1503.

    3. [3]

      [张玉, 张卫民, 孙中溪. 化学进展, 2007,19(10): 1503]

    4. [4]

      3. Ding, Z. H.; Feng, J. M. Acta Mineralogica Sinica, 2000, 20(4):349.

    5. [5]

      [丁振华, 冯俊明. 矿物学报, 2000, 20(4): 349]

    6. [6]

      4. Zhang, Z. R.; Hicks, R.W.; Pauly, T. R.; Pinnavaia, T. J.J. Am.Chem. Soc., 2002, 124(8): 1592

    7. [7]

      5. Zeng, S. Y.; Tang, K. B.; Li, T.W.; Liang, Z. H.;Wang, D.;Wang,Y. K.; Qi, Y. X.; Zhou,W.W. J. Phys. Chem. C, 2008, 112(13):4836

    8. [8]

      6. Liu,W. X.; Tang, H. X. Journal of Environmental Sciences2001,21(6): 695.

    9. [9]

      [刘文新, 汤鸿霄. 环境学报, 2001, 21(6): 695]

    10. [10]

      7. Wei, J. F.;Wu, D. Q. Acta Mineralogica Sinica, 2002, 22(3): 207

    11. [11]

      [魏俊峰, 吴大清. 矿物学报, 2002, 22(3): 207]

    12. [12]

      8. Gao S.; He, G. P.;Wu, H. H.; Sun,W. Y. Acta Petrologica Et Mineralogica, 2005, 24(3): 239.

    13. [13]

      [高嵩, 何广平, 吴宏海, 孙伟亚.岩石矿物学杂志, 2005, 24(3): 239]

    14. [14]

      9. Schindler, P.W.; Kamber, H. R. Chim. Acta, 1968, 51(7): 1781

    15. [15]

      10. Stumm,W.; Huang, C. P.; Jenkins, S. R. Croatica Chemica Acta, 1970, 42: 223

    16. [16]

      11. Brown, G. E.; Henrich, V. E.; Casey,W. H.; Clark, D. L.; Eggleston, C.; Felmy, A.; odman, D.W.; Grätzel, M.; Maciel, G.; McCarthy, M. I.; Nealson, K. H.; Sverjensky, D. A.; Toney, M. F.; Zachara, J. M. Chem. Rev., 1999, 99(1): 77

    17. [17]

      12. Wei, J. F.;Wu, D Q. Advances in Earth Science, 2000, 15(1): 90

    18. [18]

      [魏俊峰, 吴大清. 地球科学进展, 2000, 15(1): 90]

    19. [19]

      13. Breeuwsma, A.; Lyklema, J.J. Colloid Interface Sci., 1973, 43(2):437

    20. [20]

      14. Yang, X. F.; Sun, Z. X.;Wang, D. S.; Forsling,W. J. Colloid Interface Sci., 2007, 308(2): 395

    21. [21]

      15. Du, Q.; Sun, Z. X.; Forsling,W.; Tang, H. X. J. Colloid Interface Sci., 1997, 187(1): 221

    22. [22]

      16. Farley, K. J.; Dzombak, D. A.; Morel, F. M. M. J. Colloid Interface Sci., 1984, 106(1): 226

    23. [23]

      17. Jia, K.; Pan, B. C.; Zhang, Q. R.; Zhang,W. M.; Jiang, P. J.; Hong, C. H.; Pan, B. J.; Zhang, Q. X. J. Colloid Interface Sci., 2008, 318(2): 160

    24. [24]

      18. Gu, X. Y.; Evans, L. J. J. Colloid Interface Sci., 2007, 307(2): 317

    25. [25]

      19. Sun, H. L.; Zhu, L. Z. Chin. J. Inorg. Chem., 2007, 23(7): 1148

    26. [26]

      [孙洪良, 朱利中. 无机化学学报,2007, 23: 1148]

    27. [27]

      20. Wu, Z. S.; Zhang,W. M.; Sun, Z. X. Acta Chim. Sin., 2010, 68(8):769.

    28. [28]

      [吴震生, 张卫民, 孙中溪. 化学学报, 2010, 68(8): 769]

    29. [29]

      21. Zhang,W. M.; Yang, Z. D.; Liu, J.; Sun, Z. X. Acta Phys.-Chim. Sin., 2010, 26(8): 2109.

    30. [30]

      [张卫民, 杨振东, 刘嘉, 孙中溪. 物理化学学报, 2010, 26(8): 2109]

    31. [31]

      22. Herbelin, A.;Westall, J. C. FITEQL ver 4.0. Corvallis, OR: Department of Chemistry, Ore n State University, 1999

    32. [32]

      23. Karlsson, M.; Lindgren, J.Win, S. G.W. Umeå, Sweden: Inorganic Chemisty Departments, Umeå University, 2002

    33. [33]

      24. Zhao, R. H.; Guo, F.; Hu, Y. Q.; Zhao, H. Q. Microporous Mesoporous Mat., 2006, 93(1-3): 212

    34. [34]

      25. Beck, J. S.; Vartuli, J. C.; Roth,W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.W.; Olson, D. H.; Sheppard, E. W. J. Am. Chem. Soc., 1992, 114(27): 10834

    35. [35]

      26. Sun, Z. X.; Zheng, T. T.; Bo, Q. B.; Vaughan, D.;Warren, M. J. Mater. Chem., 2008, 18(48): 5941

    36. [36]

      27. Liu, J.; Zhang,W. M.;Wu, Z. S.; Qin, L. H.; Sun, R. G.; Sun, Z. X. Chin. J. Inorg. Chem., 2010, 26(11): 1967.

    37. [37]

      [刘嘉, 张卫民,吴震生, 秦利红, 孙仁贵, 孙中溪. 无机化学学报, 2010, 26(11):1967]

    38. [38]

      28. Huang, C.; Stumm,W. J. Colloid Interface Sci., 1973, 43(2): 409


  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    3. [3]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    4. [4]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    5. [5]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    6. [6]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    7. [7]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    8. [8]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    9. [9]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    16. [16]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    17. [17]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    20. [20]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

Metrics
  • PDF Downloads(1524)
  • Abstract views(2890)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return