Citation:
WANG Xi-Zhao, ZHENG Jun-Sheng, FU Rong, MA Jian-Xin. Pulse-Microwave Assisted Chemical Reduction Synthesis of Pt/C Catalyst and Its Electrocatalytic Oxygen Reduction Activity[J]. Acta Physico-Chimica Sinica,
;2011, 27(01): 85-90.
doi:
10.3866/PKU.WHXB20110111
-
We prepared a Pt/C catalyst for use in proton exchange membrane fuel cells (PEMFCs) by pulse-microwave assisted chemical reduction synthesis. The microstructure and morphology of the as-prepared catalyst was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The catalyst's electrocatalytic performance in the oxygen reduction reaction (ORR) was measured by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and constant potential polarization. The results indicate that pulse-microwave assisted chemical reduction synthesis is an efficient method to prepare PEMFC catalysts and that the pH and the microwave power largely influence the size and dispersion of Pt nanoparticles. At pH 10 and at a microwave power of 2 kW, the Pt nanoparticles were found to be uniform in size and the Pt nanoparticles size ranged between 1.3 and 2.4 nm with an average size of 1.8 nm. Additionally, the Pt nanoparticles were found to be highly dispersed on the surface of the carbon support. The electrochemical measurements showed that the electrochemical surface area (ESA) of the catalyst was 55.6 m2·g-1 and the catalyst exhibited superior performance and stability in the ORR. The maximum power density of the single cell was 2.26 W·cm-2·mg-1 for the catalyst prepared at a microwave power of 2 kW and a pH of 10 as the cathode material. The maximum power density was higher than that of the catalyst prepared using a microwave power of 1 kW (2.15 W·cm-2·mg-1) and also higher than that of the catalyst from Johnson Matthey (1.89 W·cm-2·mg-1).
-
-
-
[1]
1. Jia, Y. Q.;Wang, H.W. J. Power Sources, 2006, 155: 3192
-
[2]
2. Appleby, A. J.; ulkes, F. R. Fuel cell handbook. New York: van Nostrand Reinhold, 1989: 12-284
-
[3]
3. Kazim, M. Int. J. Energy Convers. Mgmt., 2000, 42: 7634
-
[4]
4. Dyer, C. K. J. Power Sources, 2002, 106: 31
-
[5]
5. Ahmadi, T. S.;Wang, Z. L.; Green, T. C.; Henglein, A.; EI-Sayed, M. A. Science, 1996, 272: 1924
-
[6]
6. Deivaraj T. C.; Lee J. Y. J. Power Sources, 2005, 142: 43
-
[7]
7. Park G. G.; Yang T. H.; Yoon Y. G.; LeeW. Y.; Kim C. S. Int. J. Hydrog. Energy, 2003, 28(6): 645
-
[8]
8. Chen,W. X.; Zhao, J.; Yang, L. J.; Liu Z. L. Mater. Chem. Phys., 2005, 91: 124
-
[9]
9. Zhao, J.; Chen,W. X.; Zheng, Y. F.; Li, X.; Xu, Z. D. J. Mater. Sci., 2006, 41: 5514
-
[10]
10. Yoshida, S.; Sano, M. Chem. Phys. Lett., 2006, 433: 97
-
[11]
11. Liu, Z. L.; Yang, L. J.; Chen,W. X.; Han, M.; Gan, L. Langmuir, 2004, 20(1): 181
-
[12]
12. Chu, Y. Y.;Wang, Z. B.; Gu, D. M.; Yin, G. P. J. Power Sources, 2010, 195: 1799
-
[13]
13. Song, S. Q.;Wang, Y.; Shen, P. K. J. Power Sources, 2007, 170: 46
-
[14]
14. Wang, H.W.; Dong, R. X.; Chang, H. Y.; Liu, C. L.; Chen, Y.W. Mater. Lett., 2007, 61: 830
-
[15]
15. Liang, Y.; Liao, D.W. Acta Phys. -Chim. Sin., 2008, 24: 317
-
[16]
[梁营, 廖代伟. 物理化学学报, 2008, 24: 317]
-
[17]
16. Wang, Z. B.; Yin, G. P.; Shi, P. F. J. Electrochem. Soc., 2005, 152: 2406
-
[18]
17. Liu, Z. L.; Gan, L. M.; Liang, H.; Chen,W. X.; Lee, J. Y. J. Power Sources, 2005, 139: 73
-
[19]
18. Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chem. Soc., 2004, 126: 8028
-
[20]
19. Xiao, C. J.; Hu, S.; Fu, Z. H.; Luo, Y. M.;Wang, H. Y. Appl. Chem. Indus., 2007, 36: 855
-
[21]
20. Li,W. Z.; Liang, H. H.; Zhou,W. J.; Qiu, J. H.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. J. Phys. Chem., 2003, 107: 6292.
-
[22]
21. Raadmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal., 1995,154: 98
-
[23]
22. Liu, Z. L.; Lee, J. Y.; Han, M.; Chen,W. X.; Gan, L. M. J. Mater. Chem., 2002, 12: 2453
-
[1]
-
-
-
[1]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[2]
Shiqi Zhang , Heng Zhang , Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[5]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[6]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[9]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[10]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[11]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[12]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[13]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[14]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[15]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[16]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[17]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[18]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[19]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[20]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[1]
Metrics
- PDF Downloads(1377)
- Abstract views(2817)
- HTML views(54)