Citation: JIA Yu-Xiang, LI Yan, HU Yang-Dong. Behavior of Carbon Nanotube Membranes as Channels of Salt and Water in Forward Osmosis Process[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 228-232. doi: 10.3866/PKU.WHXB20110104 shu

Behavior of Carbon Nanotube Membranes as Channels of Salt and Water in Forward Osmosis Process

  • Received Date: 12 July 2010
    Available Online: 19 November 2010

    Fund Project: 国家自然科学基金(20806076) (20806076)国家重点基础研究发展计划(973) (2003CB615706)资助项目 (973) (2003CB615706)

  • We investigated the influence of carbon nanotube (CNT) size using CNTs including CNT(6,6), CNT(7,7), CNT(8,8), CNT(9,9), CNT(10,10), and CNT(11,11), and the influence of draw solution concentrations, such as 2.5, 3.75, and 5.0 mol·L-1, on the permeation behaviors of salt and water molecules through the biomimetically manufactured forward osmosis (FO) membranes. Nanosecondscale molecular dynamic simulations were carried out to obtain the relevant information, including the distributions of the water molecules, water flux, and salt permeation within the different CNT membranes. Simulation results show that the FO membrane incorporating CNT(8,8) can achieve the highest water flux and also the lowest salt permeation.

  • 加载中
    1. [1]

      1 Van der Bruggen, B.; Lejon, L.; Vandecasteele, C. Environ. Sci. Technol., 2003, 37: 3733

    2. [2]

      2 Elimelech, M. Membr. Technol., 2007, 1: 7

    3. [3]

      3 Mi, B.; Elimelech, M. J. Membr. Sci., 2008, 320: 292

    4. [4]

      4 Gao, C.; Zheng, G.;Wang, M.;Wang, D.; Gao, X.; Zhou, Y. Technol. Water Treat., 2008, 34(2): 1

    5. [5]

      [高从堦, 郑根江, 汪锰, 王铎, 高学理, 周勇, 水处理技术, 2008, 34(2): 1]

    6. [6]

      5 Cath, T. Y.; rmly, S.; Beaudry, E. G.; Adams, V. D.; Childress, A. E. J. Membr. Sci., 2005, 257: 85

    7. [7]

      6 McCutcheon, J. R.; McGinnis, R. L.; Elimelech, M. J. Membr. Sci., 2006, 278: 114

    8. [8]

      7 Cath, T. Y.; Childress, A. E. J. Membr. Sci., 2006, 281: 70

    9. [9]

      8 Jin, K.Y.;Yu, S. C.; Gao, C. J.; Lin, K. Bullet. Sci. Technol., 2000, 16: 125

    10. [10]

      [金可勇, 俞三传, 高从堦, 林柯. 科技通报, 2000,16: 125]

    11. [11]

      9 Fu, S. Q.; Chen, P.; Luo, Z. X. Environ. Sci. Manag., 2006, 31(5): 96

    12. [12]

      [付守琪, 陈萍, 罗专溪. 环境科学与管理, 2006, 31(5): 96]

    13. [13]

      10 Wang, K. Y.; Yang, Q.; Chung,T.; Raja palan, R. Chem. Eng. Sci., 2009, 64: 1577

    14. [14]

      11 Wang, K. Y.; Chung, T.; Qin, J. J. Membr. Sci., 2007, 300: 6

    15. [15]

      12 Yang, Q.;Wang, K. Y.; Chung, T. Sep. Purif. Technol., 2009, 69: 269

    16. [16]

      13 Wang, R.; Shi, L.; Tanga, Ch. Y.; Chou, S.; Qiu, C.; Fane, A. G. J. Membr. Sci., 2010, 355: 158

    17. [17]

      14 Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Letters to Nnature, 2001, 414: 188

    18. [18]

      15 Zhu, F.; Schulten, K. Biophys. J., 2003, 85: 236

    19. [19]

      16 Kalra, A.; Garde, S.; Hummer, G. Proceedings of the of Sciences of the United State of American, 2003, 100:10175

    20. [20]

      17 Della , C.; Naor, M. M.; Hummer, G. Phys. Rev. Lett., 2003, 90: 105902

    21. [21]

      18 Wang, J.; Zhu, Y.; Zhou, J.; Lu, X. Acta Chimica Sinica, 2003, 61 (12): 1891

    22. [22]

      [王俊, 朱宇, 周健, 陆小华, 化学学报, 2003,61 (12): 1891]

    23. [23]

      19 Holt, J.; Park, H.;Wang, Y.; Stadermann, M.; Artyukhin, A.; Gri ropolous, C.; Noy, A.; Bakajin, O. Science, 2006, 312: 1034

    24. [24]

      20 Peter, C.; Hummer, G. Biophys. J., 2005, 89: 2222

    25. [25]

      21 Shao, Q.; Zhou, J.; Lu, L.; Lu, X.; Zhu, Y.; Jiang, S. Nano Letters, 2009, 9: 989

    26. [26]

      22 Beckstein, O.; Sansom, M. S. P. Phys. Biol., 2004, 1: 42

    27. [27]

      23 Corry, B. J. Phys. Chem. B, 2008, 112: 1427

    28. [28]

      24 Alexiadis, A.; Kassinos, S. Mol. Simul., 2008, 34: 671

    29. [29]

      25 Thomas, J. A.; McGaughey, A. J. H. Nano Lett., 2008, 8: 2788


  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    4. [4]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    5. [5]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    8. [8]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    12. [12]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    15. [15]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    16. [16]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    19. [19]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    20. [20]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

Metrics
  • PDF Downloads(1287)
  • Abstract views(2855)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return