Citation: ZHANG Xiao-Chao, FAN Cai-Mei, LIANG Zhen-Hai, HAN Pei-De. Electronic Structures and Optical Properties of Ilmenite-Type Hexa nal ZnTiO3[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 47-51. doi: 10.3866/PKU.WHXB20110102 shu

Electronic Structures and Optical Properties of Ilmenite-Type Hexa nal ZnTiO3

  • Received Date: 2 August 2010
    Available Online: 17 November 2010

    Fund Project: 国家自然科学基金(20876104, 20771080) (20876104, 20771080)山西省科技攻关项目(20090311082)资助 (20090311082)

  • The electronic structures of ilmenite (IL)-type hexa nal ZnTiO3 were investigated using the generalized gradient approximation (GGA) and local density approximation (LDA) based on density functional theory (DFT). The optical properties of ZnTiO3 were also calculated by the LDA method. The calculated results were compared with experimental data. Results show that the structural parameters obtained by the LDA calculation are rather close to the experimental values. IL-type hexa nal ZnTiO3 is a kind of direct bandgap (Eg=3.11 eV) semiconductor material at the Z point in the Brillouin zone. An analysis of the density of states (DOS) and the Mulliken charge population clearly reveal that the Zn―O bond is a typical ionic bond whereas the Ti―O bond, which is similar to the Ti―O bond in perovskites ATiO3 (A=Sr, Pb, Ba), is covalent in character. Furthermore, the dielectric function, absorption spectrum, and refractive index were obtained and analyzed on the basis of electronic band structures and the DOS for radiation up to 50 eV.

  • 加载中
    1. [1]

      1. Dulin, F. H.; Rase, D. E. J. Am. Ceram. Soc., 1960, 43: 125

    2. [2]

      2. Bartram, S. F.; Slepetys, A. J. Am. Ceram. Soc., 1961, 44: 493

    3. [3]

      3. Chang, Y. S.; Chang, Y. H.; Chen, I. G.; Chen, G. J.; Chai, Y. L. J. Cryst. Growth, 2002, 43: 319

    4. [4]

      4. Botta, P. M.; Aglietti, E. F.; Lopez, J. M. P. J. Mater. Sci., 2004, 39: 5195

    5. [5]

      5. Kim, H. T.; Byun, J. D.; Kim, Y. Mater. Res. Bull., 1998, 33: 963

    6. [6]

      6. Kim, H. T.; Byun, J. D.; Kim, Y. Mater. Res. Bull., 1998, 33: 975

    7. [7]

      7. Obayashi, H.; Sakurai, Y.; Gejo, T. J. Solid State Chem., 1976, 17: 299

    8. [8]

      8. Chang, Y. S.; Chang, Y. H.; Chen, I. G.; Chen, G. J.; Chai, Y. L.; Fang, T. H.;Wu, S. A. Ceram. Int., 2004, 30: 2183

    9. [9]

      9. Chaouchi, A.; Aliouat, M.; Marinel, S.; Bourahla, H. Ceram. Int., 2007, 33: 245

    10. [10]

      10. Wang, S. F.; Lü, M. K.; Gu, F.; Song, C. F.; Dong, X.; Yuan, D. R.; Zhou, G. J.; Qi, Y. X. Inorg. Chem. Commun., 2003, 6: 185

    11. [11]

      11. Mojmhedi,W.; Abbasian, J. Energy Fuels, 1995, 9: 429

    12. [12]

      12. Chen, Z. X.; Derking, A.; Koot,W.; Van-Dijk, M. P. J. Catal., 1996, 161: 730

    13. [13]

      13. Huang, J. J.; Zhao, J. T.;Wei, X. F.;Wang, Y.; Bu, X. P. Powd. Technol., 2008, 180: 196

    14. [14]

      14. Kong, J. Z.; Li, A. D.; Zhai, H. F.; Li, H.; Yan, Q. Y.; Ma, J.;Wu, D. J. Hazard. Mater., 2009, 171: 918

    15. [15]

      15. Simin, J. D.; Mahjoub, A. R. J. Alloy. Compd., 2009, 486: 805

    16. [16]

      16. Cohen, R. E.; Krakauer, H. Phys. Rev. B, 1990, 42: 6416

    17. [17]

      17. Cohen, R. E. Nature, 1992, 358: 136

    18. [18]

      18. Tinte, S.; Stachiotti, M. G. Phys. Rev. B, 1998, 58: 11959

    19. [19]

      19. Piskunov, S.; Heifets, E.; Eglitis, R. I.; Borstel, G. Comput. Mater. Sci., 2004, 9: 165

    20. [20]

      20. Hosseini, S. M.; Movlarooy, T.; Kompany, A. Physica B, 2007, 391: 316

    21. [21]

      21. Zhang, Z. Y.; Yang, D. L.; Liu, Y. H.; Cao, H. B.; Shao, J. X.; Jing, Q. Acta Phys. -Chim. Sin., 2009, 25: 1731

    22. [22]

      [张子英, 杨德 林, 刘云虎, 曹海滨, 邵建新, 井群. 物理化学学报, 2009, 25: 1731]

    23. [23]

      22. Yun, J. N.; Zhang, Z. Y. Acta Phys. -Chim. Sin., 2010, 26: 751

    24. [24]

      [贠江妮, 张志勇. 物理化学学报, 2010, 26: 751]

    25. [25]

      23. Segall, M. D.; Lindan, P. L. D.; Probert, M. J. J. Phys. -Condes. Matter, 2002, 14: 2717

    26. [26]

      24. Payne, M. C.; Teter, M. P.; Allan, D. C. Rev. Mod. Phys., 1992, 64: 1045

    27. [27]

      25. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett., 1996, 77: 3865

    28. [28]

      26. Monkhorst, H. J.; Pack, J. D.; Freeman, D. L. Solid State Commun., 1979, 29: 723

    29. [29]

      27. Korba, S. A.; Meradji, H.; Ghemid, S.; Bouhafs, B. Comput. Mater. Sci., 2009, 44:1265

    30. [30]

      28. u, H. Y.; Gao, F. M.; Zhang, J.W. Comput. Mater. Sci, 2010, 49: 552

    31. [31]

      29. Ye, C.; Pan, S. S.; Teng, X. M. Appl. Phys. A, 2008, 90: 375

    32. [32]

      30. Jones, R. O.; Gunnarsson, O. Rev. Mod. Phys., 1989, 61: 689

    33. [33]

      31. Tell, J. S. Phys. Rev., 1956, 104: 1760

    34. [34]

      32. Sharma, S.; Ambrosch-Draxl, C.; Khan, M. A.; Blaha, P.; Auluck, S. Phys. Rev. B, 1999, 60: 8610

    35. [35]

      33. Puschnig, P.; Ambrosch-Draxl, C. Phys. Rev. B, 2002, 66: 165105

    36. [36]

      34. Ambrosch-Draxl, C.; Sofo, J. O. Comput. Phys. Commun., 2006, 175: 1

    37. [37]

      35. Delin, A.; Eriksson, O.; Ahuja, R.; Johansson, B. Phys. Rev. B, 1996, 54: 1673

    38. [38]

      36. Fox, M. Optical properties of solids. New York: Oxford University Press, 2001

    39. [39]

      37. Zhang, F. C.; Zhang, Z. Y.; Zhang, W. H.; Yan, J. F.; Yun, J. N. Acta Chim. Sin., 2008, 66: 1863

    40. [40]

      [张富春, 张志勇, 张威虎, 阎军 峰, 贠江妮. 化学学报, 2008, 66: 1863]


  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    3. [3]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    4. [4]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    9. [9]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    10. [10]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    14. [14]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    15. [15]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    16. [16]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    20. [20]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

Metrics
  • PDF Downloads(1743)
  • Abstract views(3245)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return