Citation: LI Mei-Chao, WANG Wu-Yang, ZHU Wan-Xia, MA Chun-An. Electrocatalytic Oxidation of Ascorbic Acid on a PPy-HEImTfa/Pt Electrode and Its Mechanism[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3212-3216. doi: 10.3866/PKU.WHXB20101218 shu

Electrocatalytic Oxidation of Ascorbic Acid on a PPy-HEImTfa/Pt Electrode and Its Mechanism

  • Received Date: 10 June 2010
    Available Online: 5 November 2010

    Fund Project: 浙江省自然科学基金(Y4100647) (Y4100647)浙江省分析测试科技计划(2008F70029)资助项目 (2008F70029)

  • A platinum electrode was electrochemically modified with polypyrrole (PPy) in the ionic liquid 1-ethylimidazolium trifluoroacetate (HEImTfa) to produce a modified electrode (PPy-HEImTfa/Pt). Its electrocatalytic performance toward the oxidation of ascorbic acid (0.1 mol·L-1) was investigated by cyclic voltammetry. Compared with a bare Pt electrode and a PPy-H2SO4/Pt electrode, which was prepared in a solution of H2SO4, the peak potentials for ascorbic acid oxidation on the PPy-HEImTfa/Pt electrode decreased by 0.19 and 0.10 V, respectively. Additionally, the peak currents increased by 3.6 and 3.0 mA, respectively. Therefore, the electrocatalytic activity of the PPy-HEImTfa/Pt electrode for the oxidation of ascorbic acid was far better than that of the other systems. In situ Fourier transform infrared (In situ FTIR) spectroscopy results showed that the ascorbic acid was firstly oxidized to dehydroascorbic acid on the PPy-HEImTfa/Pt electrode and then underwent a fast hydration reaction to give hydrated dehydroascorbic acid in the aqueous solution. The hydrated dehydroascorbic acid then underwent further hydrolysis to form 2,3-diketogulonic acid by a ring opening reaction. Finally, a part of ascorbic acid was oxidized to CO2 at high potentials.

  • 加载中
    1. [1]

      1. Raoof, J. B.; Ojani, R.; Rashid-Nadimi, S. Electrochim. Acta, 2005, 50(24): 4694

    2. [2]

      2. Xing, X. K.; Bae, I. T.; Shao, M. J.; Liu C. C. J. Electroanal. Chem., 1993, 346(1-2): 309

    3. [3]

      3. Zhang, L. Electrochim. Acta, 2007, 52(24): 6969

    4. [4]

      4. Paixao, T. R. L. C.; Bertotti, M. J. Pharm. Biomed. Anal., 2008, 46(3): 528

    5. [5]

      5. Ambrosi, A.; Morrin, A.; Smyth, M. R.; Killard, A. J. Anal. Chim. Acta, 2008, 609(1): 37

    6. [6]

      6. Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. J. Chem. Soc., Chem. Commun., 1979, (14): 635

    7. [7]

      7. Li, Y. F. Polymer Bulletin, 2005, (4): 51. [李永舫. 高分子通报, 2005, (4): 51]

    8. [8]

      8. Ozcan, L.; Sahin, M.; Sahin, Y. Sensors, 2008, 8(9): 5792

    9. [9]

      9. Gholivand, M. B.; Amiri, M. Electroanalysis, 2009, 21(22): 2461

    10. [10]

      10. Wang, J. S.;Wang, J. X.;Wang, Z.;Wang, S. C. Synth. Met., 2006, 156(7-8): 610

    11. [11]

      11. Mohadesi, A.; Taher, M. A. Sens. Actuators B, 2007, 123(2): 733

    12. [12]

      12. Mascaro, L. H.; ncalves, D.; Bulhoes, L. O. S. Thin Solid Films, 2004, 461(2): 243

    13. [13]

      13. Mazurkiewicz, J. H.; Innis, P. C.;Wallace, G. G.; MacFarlane, D. R.; Forsyth, M. Synth. Met., 2003, 135(1-3): 31

    14. [14]

      14. Pringle, J. M.; Efthimiadis, J.; Howler, P. C.; Efthimiadis, J.; MacFarlane, D. R.; Chaplin, A. B.; Hall, S. B.; Officer, D. L.; Wallace, G. G. Polymer, 2004, 45(5): 1447

    15. [15]

      15. Sekiguchi, K.; Atobe, M.; Fuchigami, T. Electrochem. Commun., 2002, 4(11): 881

    16. [16]

      16. Li, M. C.; Ma, C. A.; Liu, B. Y.; Jin, Z. M. Electrochem. Commun., 2005, 7(2): 209

    17. [17]

      17. Sun, S. G.; ng, H. Petrochemical Technology, 2001, 30(10): 806. [孙世刚, 贡辉. 石油化工, 2001, 30(10): 806]

    18. [18]

      18. Nichl, M. E.; Hu, H. Sol. Energy Mater. Sol. Cells, 2000, 63(4): 423

    19. [19]

      19. Li, M. C.; Shen, Z. L.; Ma, C. A.; Gao, Y. F. Journal of Chemical Industry and Engineering (China), 2006, 57(7): 1588

    20. [20]

      20. Yang, H.; Lu, T. H.; Xue, K. H.; Sun, S. G.; Lu, G. Q.; Chen, S. P. J. Electrochem. Soc., 1997, 144(7): 2302

    21. [21]

      21. Xue, K. H.; Cai, C. X.; Yang, H.; Zhou, Y. M.; Sun, S. G.; Chen, S. P.; Xu, G. J. Power Sources, 1998, 75(2): 207

    22. [22]

      22. Gao, Y. F.; Liu,W. H.; Li, Z. G.; Ma, C. A. Chin. J. Spectroscopy Laboratory, 2002, 19(3): 354. [高云芳, 刘文涵, 李祖光, 马淳安. 光谱实验室, 2002, 19(3): 354]

    23. [23]

      23. Kokoh, K. B.; Hahn, F.; Metayer, A.; Lamy, C. Electrochim. Acta, 2002, 47(24): 3965

    24. [24]

      24. Wang, X. Y.; Cui, X. P.; Cui, Y. M.; Jin, B. K.; Lin, X. Q. Chem. J. Chin. Univ., 2002, 23(8): 1498. [汪夏燕, 崔兴品, 崔运梅, 金葆康, 林祥钦. 高等学校化学学报, 2002, 23(8): 1498]


  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    10. [10]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    11. [11]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    12. [12]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    18. [18]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    19. [19]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(1226)
  • Abstract views(2893)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return