Citation: LI Zhao-Hu, ZHANG Zhi-Kun, GUO Deng-Zhu. Fabrication of Al2O3 Nanoparticles by Cathodic Plasma Electrolysis[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 3106-3112. doi: 10.3866/PKU.WHXB20101114 shu

Fabrication of Al2O3 Nanoparticles by Cathodic Plasma Electrolysis

  • Received Date: 24 May 2010
    Available Online: 21 September 2010

    Fund Project: 国家自然科学基金(60971002) (60971002)国家基础研究重大项目计划(973)(2006CB932402)资助 (973)(2006CB932402)

  • We used aluminum as the cathodic material and an aqueous solution of 3 mol·L-1 NH4NO3 as the electrolyte in our work. Al2O3 nanoparticles were fabricated using asymmetrical electrodes during cathodic plasma electrolysis. The morphology and structure of the particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersion (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). We identified cubic Al2O3 as the main component. The changes in current and optical emission phenomena during the cathodic plasma electrolysis were also studied. Based on the experimental results, we discuss the mechanisms responsible for particle formation.

     

  • 加载中
    1. [1]

      1. Shi, Z. J.; Lian, Y. F.; Zhou, X. H.; Gu, Z. N.; Zhang, Y. G.; Iijima, S.; Zhou, L. X.; Yue, K. T.; Zhang, S. L. Carbon, 1999, 37: 1449

    2. [2]

      2. Cao, Z.; Walsh, J. L.; Kong, M. G. Appl. Phys. Lett., 2009, 94: 021501

    3. [3]

      3. Akiyama, H.; Zettsu, N.; Yamamura, K. Thin Solid Films, 2010, 13: 3551

    4. [4]

      4. Furusho, H.; Kitano, K.; Hamaguchi, S.; Nagasaki, Y. Chem. Mater., 2009, 21: 3526

    5. [5]

      5. Guan, Y. J.; Xia, Y. Advances in Mechanics, 2004, 34: 237 [关永军,夏原.力学进展, 2004, 34: 237]

    6. [6]

      6. Yang, X. Z.; He, Y. D.; Wang, D. R.; Gao, W. Science Bulletin, 2002, 47: 525 [杨晓战,何业东,王德仁,高唯. 科学通报, 2002, 47: 525]

    7. [7]

      7. Tokushige, M.; Nishikiori, T.; Ito, Y. J. Appl. Electrochem., 2009, 39: 1665

    8. [8]

      8. Aliofkhazraei, M.; Hassanzadeh-Tabrizi, S. A.; Rouhaghdam, A. S.; Heydarzadeh, A. Ceram. Int., 2009, 35: 2053

    9. [9]

      9. Aliofkhazraei, M.; Rouhaghdam, A. S.; Heydarzadeh, A.; Elmkhah, H. Mater. Chem. Phys., 2009, 113: 607

    10. [10]

      10. Paulmier, T.; Bell, J. M.; Fredericks, P. M. Thin Solid Films, 2007, 515: 2926

    11. [11]

      11. Paulmier, T.; Bell, J. M.; Fredericks, P. M. J. Mater. Process. Technol., 2008, 208: 117

    12. [12]

      12. Richmonds, C.; Sankaran, R. M. Appl. Phys. Lett., 2008, 93: 131501

    13. [13]

      13. Toriyabe, Y.; Watanabe, S.; Yatsu, S.; Shibayama, T.; Mizuno, T. Appl. Phys. Lett., 2007, 91: 041501

    14. [14]

      14. Azumi, K.; Kanada, A.; Seo, M.; Mizuno, T. Electrochimica Acta, 2007, 52: 4463

    15. [15]

      15. Mizuno, T.; Akimoto, T.; Azumi, K.; Ohmort, T.; Aoki, Y.; Takahashi, A. Jpn. J. Appl. Phys., 2005, 44: 396

    16. [16]

      16. Yan, Z. C.; Chen, L.; Wang, H. L. Acta Phys. -Chim. Sin., 2007, 23: 835 [严宗诚, 陈砺, 王红林.物理化学学报, 2007, 23: 835]

    17. [17]

      17. Pearse, P. W. B.; Gaydon, A. G. The identification of molecular spectra. 2nd ed. London: Chapman&Hall Ltd., 1950: 51-265


  • 加载中
    1. [1]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    2. [2]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    3. [3]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    4. [4]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    5. [5]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    6. [6]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    10. [10]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    13. [13]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    16. [16]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    19. [19]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(1306)
  • Abstract views(2530)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return