Citation: ZHANG Qiao-Bao, FENG Zeng-Fang, HAN Nan-Nan, LIN Ling-Ling, ZHOU Jian-Zhang, LIN Zhong-Hua. Preparation and Photoeletrochemical Performance of CdS Quantum Dot Sensitized ZnO Nanorod Array Electrodes[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2927-2934. doi: 10.3866/PKU.WHXB20101113 shu

Preparation and Photoeletrochemical Performance of CdS Quantum Dot Sensitized ZnO Nanorod Array Electrodes

  • Received Date: 17 May 2010
    Available Online: 21 September 2010

    Fund Project: 国家自然科学基金(20433040)资助项目 (20433040)

  • We sensitized CdS quantum dots on a ZnO nanorod array electrode by the successive ionic layer adsorption and reaction method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) experiments were performed to characterize the morphology, crystalline phase, and grain size of the CdS quantum dot sensitized ZnO nanorod array electrodes. The effect of CdS deposition cycle number and the precursor concentration were studied by photocurrent-potential characteristics and photocurrent spectra. The results showed that the best photoelectrochemical performance was obtained at 0.1 mol·L-1 for both Cd2+ and S2- after 15 cycles. Meanwhile, the composite films exhibited a remarkably enhanced photoelectric conversion efficiency compared with the ZnO nanorods array films and with CdS quantum dot electrodes. The monochromatic incident photon-to- electron conversion efficiency (IPCE) was as high as 76% at 380 nm. This may be attributed to the broad light harvesting capability of CdS and the efficient separation of photogenerated carriers on its interface. The reason for this enhancement was further confirmed by a photoluminescent experiment. The results showed that sensitization with CdS quantumdots reduced the recombination of electron and hole pairs resulting in an enhancement in the photocurrent.

     

  • 加载中
    1. [1]

      1. Wang, Z. L. Materials Science and Engineering R, 2009, 64: 33

    2. [2]

      2. Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv. Mater., 2009, 21: 4087

    3. [3]

      3. Ganesh, T.; Mane, R. S.; Cai, G.; Chang, J. H.; Han, S. H. J. Phys. Chem. C, 2009, 113: 7666

    4. [4]

      4. Shen, Q.; Kobayashi, J.; Diguna, L. J.; Toyoda, T. J. Appl. Phys., 2008, 103: 084304

    5. [5]

      5. Prashant, V. K. J. Phys. Chem. C, 2008, 112: 18737

    6. [6]

      6. Kurtis, S.; Leschkies, R. D.; Joysurya, B.; Emil, E. P.; Janice, E. B.; Barry, C.; Uwe, R. K.; David, J. N.; Eray, S. A. Nano Lett., 2007, 7: 1793

    7. [7]

      7. Song, B.; Cheng, K.; Wu, C.; Du, Z. L. Chinese Journal of Materials Research, 2009, 23: 89 [宋冰, 程柯,武超, 杜祖亮.材料研究学报, 2009, 23: 89]

    8. [8]

      8. Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc., 2008, 130: 1124

    9. [9]

      9. Baker, D. R.; Kamat, P. V. Adv. Funct. Mater., 2009, 19: 805

    10. [10]

      10. Tak, Y. J.; Hong, S. J.; Lee, J. S.; Yong, K. Journal of Crystal Growth & Design, 2009, 9: 2627

    11. [11]

      11. Zhang, Y.; Xie, T. F.; Jiang, T. F.; Wei, X.; Pang, S.; Wang, X.; Wang, D. J. Nanotechnology, 2009, 20: 155707

    12. [12]

      12. Spoerke, E. D.; Lloyd, M. T.; Lee, Y. J.; Lambert, T. N.; McKenzie, B. B.; Jiang, Y. B.; Olson, D. C.; Sounart, T. L.; Hsu, J. W. P.; Voigt, J. A. J. Phys. Chem. C, 2009, 113: 16329

    13. [13]

      13. Lee,W. J.; Min, S. K.; Dhas, V.; Ogale, S. B.; Han, S. H. Electrochem. Commun., 2009, 11: 103

    14. [14]

      14. Lee, H. J.; Leventis, H. C.; Moon, S. J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater., 2009, 19: 1

    15. [15]

      15. Song, X.; Fu, X. S.; Xie, Y.; Song, J. G.; Wang, H. L.; Sun, J.; Du, X. W. Semicond. Sci. Technol., 2010, 25: 045031

    16. [16]

      16. Guo, H. H.; Lin, Z. H.; Feng, Z. F.; Lin, L. L.; Zhou, J. Z. J. Phys. Chem. C, 2009, 113: 12546

    17. [17]

      17. Feng, Z. F.; Zhang, Q. B.; Lin, L. L.; Guo, H. H.; Zhou, J. Z.; Lin, Z. H. Chem. Mater., 2010, 22: 2705

    18. [18]

      18. Mei, Z. X.; Zhang, X. Q.; Wang, Z. J.; Wang, J.; Li, Q. F.; Xu, S. R Spectroscopy and Spectral Analysis, 2003, 23: 461 [梅增霞, 张希青,王志坚, 王晶,李庆福,徐叙容. 光谱学与光谱分析, 2003, 23: 461]

    19. [19]

      19. O'Regan, B.; Grätzel, M. Nature, 1991, 335: 737

    20. [20]

      20. Grätzel, M. Chem. Lett., 2005, 34: 8

    21. [21]

      21. Shan, F. K.; Liu, G. X.; Lee, W. J.; Lee, G. H.; Kim, I. S.; Shin, B. C. Appl. Phys. Lett., 2005, 86: 221910

    22. [22]

      22. Xi, Y. Y.; Zhou, J. Z.; Guo, H. H.; Cai, C. D.; Lin, Z. H. Chem. Phys. Lett., 2005, 412: 60

    23. [23]

      23. Zhang, Q. B.; Guo, H. H.; Feng, Z. F.; Lin, L. L.; Zhou, J. Z.; Lin, Z. H. Electrochim. Acta, 2010, 55: 4889

    24. [24]

      24. Das, K.; De, S. K. J. Phys. Chem. C, 2009, 113: 3494

    25. [25]

      25. Bing, J. H.; Kamat, P. V. ACS Nano, 2009, 3: 1467


  • 加载中
    1. [1]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    4. [4]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    5. [5]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    6. [6]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    7. [7]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    8. [8]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    9. [9]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    15. [15]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    16. [16]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    17. [17]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    18. [18]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

Metrics
  • PDF Downloads(1985)
  • Abstract views(4395)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return