Citation: WU Tao, TAO Jie, DENG Jie, TANG Yu-Xin, ZHU Hong, GAO Peng. Preparation and Characterization of One-Dimensional TiO2 Nanowire Films on a Flexible Stainless Steel Substrate[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 3087-3094. doi: 10.3866/PKU.WHXB20101103 shu

Preparation and Characterization of One-Dimensional TiO2 Nanowire Films on a Flexible Stainless Steel Substrate

  • Received Date: 15 April 2010
    Available Online: 8 September 2010

    Fund Project: 江苏省自然科学基金(BK2004129) (BK2004129)航空基金(04H5209) (04H5209)南京航空航天大学基本科研业务费专项科研项目助(NS2010153)资助 (NS2010153)

  • We synthesized a one dimensional (1D) TiO2 nanowire with a large aspect ratio on non-Ti substrate in NaOH aqueous solution by the hydrothermal treatment of pure titanium films deposited by direct current magnetron sputtering on a flexible stainless steel substrate (50 μm). The samples were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoelectro- chemical methods. Results show that the density and crystallinity of the titanium film as well as the binding strength between the Ti film and the stainless steel substrate increased with an increase in substrate temperature. The optimum hydrothermal temperature for the formation of the 1D TiO2 nanowire was 130-150 ℃when the concentration of NaOH was kept at 10 mol·L-1. TiO2 nanowires with diameters of 10-30 nm and lengths of up to several microns grow in a crosswise manner and form a 3D network structure. Moreover, linear sweep voltammetry and transient photocurrent response curves indicated that the 1D TiO2 nanowire film electrode had better photoelectrochemical performance than the TiO2 nanoparticle electrode. This technique provides a new method for the fabrication of 1D TiO2 nanowire films on different non-Ti heterogeneous substrates.

     

  • 加载中
    1. [1]

      1. Fujishima, A.; Honda, K. Nature, 1972, 238: 37

    2. [2]

      2. Chen, X. Q.; Liu, H. B.; Gu, G. B. Materials Chemistry and Physics, 2005, 91: 317

    3. [3]

      3. Ao, Y. H.; Xu, J. J.; Fu, D. G.; Yuan, C. W. Applied Surface Science, 2008, 255: 3137

    4. [4]

      4. Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Pishko, M. V.; Grimes, C. A. J. Mater. Res., 2004, 19(2): 628

    5. [5]

      5. Kang, M. G.; Park, N. G.; Ryu, K. S.; Chang, S. H.; Kim, K. J. Sol. Energy Mater. Sol. Cells, 2006, 90: 574

    6. [6]

      6. O'Regan, B.; Grätzel, M. Nature, 1991, 353: 737

    7. [7]

      7. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Adv. Mater., 1999, 15(11): 1307

    8. [8]

      8. Zhao, Y.; Lee, U.; Suh, M.; Kwon, Y. Bull. Korean Chem. Soc., 2004, 25: 1341

    9. [9]

      9. Wang, Y. F.; Wu, M. Y.; Zhang, W. F. Electrochimica Acta, 2008, 53: 7863

    10. [10]

      10. Seo, H. K.; Kim, G. S.; Ansari, S. G.; Kim, Y. S.; Shin, H. S.; Shim, K. H.; Suh, E. K. Sol. Energy Mater. Sol. Cells, 2008, 92: 1533

    11. [11]

      11. Costa, L. L.; Prado, A. G. S. Journal of Photochemistry and Photobiology A-Chemistry, 2009, 201: 45

    12. [12]

      12. Tian, Z. R.; James, A. V.; Liu, J.; Bonnie, M.; Xu, H. F. J. Am. Chem. Soc., 2003, 125(41): 12384

    13. [13]

      13. Peng, X. S.; Chen, A. C. Adv. Funct. Mater., 2006, 16: 1355

    14. [14]

      14. Bo, C.; Erick, S. V.; Tetsuro, J. J. Nanosci. Nanotechnol., 2007, 7: 668

    15. [15]

      15. Guo, Y. P.; Lee, N. H.; Oh, H. J.; Yoon, C. R.; Park, K. S.; Lee, H. G.; Lee, K. S.; Kim, S. J. Nanotechnology, 2007, 18: 295608

    16. [16]

      16. Guo, Y. P.; Lee, N. H.; Oh, H. J.; Yoon, C. R.; Park, K. S.; Lee, W. H.; Li, Y. Z.; Lee, H. G.; Lee, K. S.; Kim, S. J. Thin Solid Films, 2008, 516: 8363

    17. [17]

      17. Guo, Y. P.; Lee, N. H.; Oh, H. J.; Park, K. S.; Jung, S. C.; Kim, S. J. J. Nanosci. Nanotechnol., 2008, 8: 5316

    18. [18]

      18. Guo, Y. P.; Lee, N. H.; Oh, H. J.; Yoon, C. R.; Park, K. S.; Jung, S. C.; Kim, S. J. Surface&Coatings Technology, 2008, 202: 5431

    19. [19]

      19. Mor, G. K.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Adv. Funct. Mater., 2005, 15: 1291

    20. [20]

      20. Tang, Y. X.; Tao, J.; Tao, H. J.; Zhang, Y. Y.; Li, Z. L.; Tian, X. L. Rare Metal Materials and Engineering, 2008, 37(12): 2186 [汤育欣,陶杰,陶海军, 张焱焱,李转利,田西林. 稀有金属材料与工程, 2008, 37(12): 2186]

    21. [21]

      21. Tang, Y. X.; Tao, J.; Zhang, Y. Y.;Wu, T.; Tao, H. J.; Bao, Z. G. Acta Phys. -Chim. Sin., 2008, 24(12): 2191 [汤育欣, 陶杰, 张焱焱, 吴涛,陶海军,包祖国.物理化学学报, 2008, 24(12): 2191]

    22. [22]

      22. Cullity, B. D. Elements of X-ray diffraction. Massachussets: Addison-Wesley Publishing Company Press, 1978: 447

    23. [23]

      23. Dong, X.; Tao, J.; Li, Y. Y.; Wang, T.; Zhu, H. Acta Phys. -Chim. Sin., 2009, 25(9): 1874 [董祥,陶杰,李莹滢,汪涛,朱宏. 物理化学学报, 2009, 25(9): 1874]


  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    5. [5]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    8. [8]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    10. [10]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    11. [11]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    14. [14]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    18. [18]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    19. [19]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(1979)
  • Abstract views(3507)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return