Citation: WU Wei-Kang, WANG Jia-Li, LIU Su-Qin, HUANG Ke-Long, LIU Yan-Fei. Thermal Decomposition Kinetics of Poly(propylene carbonate maleate)[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2915-2919. doi: 10.3866/PKU.WHXB20101028 shu

Thermal Decomposition Kinetics of Poly(propylene carbonate maleate)

  • Received Date: 14 May 2010
    Available Online: 17 September 2010

    Fund Project: 国家自然科学基金(20976197) (20976197)高等学校博士学科点专项科研基金(20090162120013)资助项目 (20090162120013)

  • The thermal decomposition kinetics of the novel terpolymer, poly(propylene carbonate maleate) (PPCMA), was investigated using thermogravimetric (TG) analysis at different heating rates. A new computational method called nonlinear approximation (NLA) is introduced in this work. The Flynn-Wall-Ozawa (FWO), Tang, Kissinger-Akahira- Sunose (KAS), and NLA methods were used to calculate the apparent activation energy (Ea). The results show that the NLA method is ideal for Ea calculations because of its simpler and more appropriate analysis process. It does, however, give slightly higher average relative errors for Ea compared to the other typical model-free methods. Calculations using the solid-state reaction model-fitting method indicated that the thermal decomposition process was composed of multiple mechanisms. For the whole decomposition process, the values of Ea were between 70 and 135 kJ·mol-1, and the pre-exponential factor (A) varied from5.24×104 to 9.89×107 min-1. The differences in Ea also explain the differences in decomposition temperature between poly(propylene carbonate) (PPC) and PPCMA.

     

  • 加载中
    1. [1]

      1. Santer, B. D.; Taylor, K. E.;Wigley, T. M. L.; Johns, T. C.; Jones, P. D.; Karoly, D. J.; Mitchell, J. F. B.; Oort, A. H.; Penner, J. E.; Ramaswamy, V.; Schwarzkopf, M. D. Nature, 1996, 382: 39

    2. [2]

      2. Meehl, G. A.; Washington,W. M. Nature, 1996, 382: 56

    3. [3]

      3. Broecker,W. S. Science, 1997, 278: 1582

    4. [4]

      4. Kacholia, K.; Reck, R. A. Climatic Change, 1997, 35: 53

    5. [5]

      5. Beckman, E. J. Science, 1999, 283: 946

    6. [6]

      6. Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci. Polym. Lett., 1969, 7: 287

    7. [7]

      7. Darensbourg, D. J.; Mattew, W. H. Macromolecules, 1995, 28: 7577

    8. [8]

      8. Zhang, N. Y.; Chen, L. B.; Yang, S. Y.; Yu, A. F.; He, S. J. Acta Polym. Sin., 2000: 741

    9. [9]

      9. Plesse, C.; Vidal, F.; Randriamahazaka, H.; Teyssi佴, D.; Chevrot, C. Polymer, 2005, 46: 7771

    10. [10]

      10. Jiang, G. H.; Wang, L.; Yu, H. J.; Dong, X. C.; Chen, C. Polymer, 2006, 47: 12

    11. [11]

      11. Jiang, G. H.; Wang, L.; Chen, T.; Yu, H. J.; Dong, X. C.; Chen, C. Polymer, 2005, 46: 9501

    12. [12]

      12. Lu, L. B.; Huang, K. L. J. Polym. Sci. Pol. Chem., 2005, 43: 2468

    13. [13]

      13. Liu, Y. F.; Huang, K. L.; Peng, D. M.; Wu, H. Polymer, 2006, 47: 8453

    14. [14]

      14. Flynn, J. H.;Wall, L. A. J. Res. Nat. Bur. Stand. Sect. A, 1966, 70: 487

    15. [15]

      15. Ozawa, T. B. Chem. Soc. Jpn., 1965, 38: 1881

    16. [16]

      16. Kissinger, H. E. Anal. Chem., 1957, 29: 1702

    17. [17]

      17. Akahira, T.; Sunose, T. Res. Rep. Chiba. Inst. Technol., 1971, 16: 22

    18. [18]

      18. Tang, W. J.; Liu, Y. W.; Zhang, H.;Wang, C. X. Thermochim. Acta, 2003, 408: 39

    19. [19]

      19. Tang, W. J.; Chen, D. H.; Wang, C. X. AICHE J., 2006, 52: 2211

    20. [20]

      20. Quan, Z.; Min, J.; Zhou, Q.; Xie, D.; Liu, J.; Wang, S.; Zhao, X.; Wang, F. Macromol. Symp., 2003, 195: 281

    21. [21]

      21. Vyazovkin, S. J. Comput. Chem., 2001, 22: 178

    22. [22]

      22. Senum, G. I.; Yang, R. T. J. Therm. Anal. Calorim., 1977, 11: 445

    23. [23]

      23. Vyazovkin, S. Thermochim. Acta, 2000, 355: 155

    24. [24]

      24. Opfermann, J. R.; Hammersheim, H. J. Thermochim. Acta, 2003, 397: 1

    25. [25]

      25. Sahin, O.; Tas, E.; Dolas, H. J. Therm. Anal. Calorim., 2007, 89: 123

    26. [26]

      26. Liu, B. Y.; Zhao, X. J.; Wang, X. H.;Wang, F. S. J. Appl. Polym. Sci., 2003, 90: 947

    27. [27]

      27. Vyazovkin, S.; Sbirrazzuoli, N. Macromol. Rapid. Commun., 2006, 27: 1515

    28. [28]

      28. Coats, A. W.; Redfern, J. P. J. Polym. Sci. Polym. Lett., 1965, 3: 917

    29. [29]

      29. Coats, A. W.; Redfern, J. P. Nature, 1964, 201: 68

    30. [30]

      30. Jankovic', B.; Adnad-evic', B.; Jovanovic', J. Thermochim. Acta, 2007, 452: 106


  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    4. [4]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    15. [15]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

Metrics
  • PDF Downloads(1360)
  • Abstract views(3651)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return