Citation:
WU Wei-Kang, WANG Jia-Li, LIU Su-Qin, HUANG Ke-Long, LIU Yan-Fei. Thermal Decomposition Kinetics of Poly(propylene carbonate maleate)[J]. Acta Physico-Chimica Sinica,
;2010, 26(11): 2915-2919.
doi:
10.3866/PKU.WHXB20101028
-
The thermal decomposition kinetics of the novel terpolymer, poly(propylene carbonate maleate) (PPCMA), was investigated using thermogravimetric (TG) analysis at different heating rates. A new computational method called nonlinear approximation (NLA) is introduced in this work. The Flynn-Wall-Ozawa (FWO), Tang, Kissinger-Akahira- Sunose (KAS), and NLA methods were used to calculate the apparent activation energy (Ea). The results show that the NLA method is ideal for Ea calculations because of its simpler and more appropriate analysis process. It does, however, give slightly higher average relative errors for Ea compared to the other typical model-free methods. Calculations using the solid-state reaction model-fitting method indicated that the thermal decomposition process was composed of multiple mechanisms. For the whole decomposition process, the values of Ea were between 70 and 135 kJ·mol-1, and the pre-exponential factor (A) varied from5.24×104 to 9.89×107 min-1. The differences in Ea also explain the differences in decomposition temperature between poly(propylene carbonate) (PPC) and PPCMA.
-
-
-
[1]
1. Santer, B. D.; Taylor, K. E.;Wigley, T. M. L.; Johns, T. C.; Jones, P. D.; Karoly, D. J.; Mitchell, J. F. B.; Oort, A. H.; Penner, J. E.; Ramaswamy, V.; Schwarzkopf, M. D. Nature, 1996, 382: 39
-
[2]
2. Meehl, G. A.; Washington,W. M. Nature, 1996, 382: 56
-
[3]
3. Broecker,W. S. Science, 1997, 278: 1582
-
[4]
4. Kacholia, K.; Reck, R. A. Climatic Change, 1997, 35: 53
-
[5]
5. Beckman, E. J. Science, 1999, 283: 946
-
[6]
6. Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci. Polym. Lett., 1969, 7: 287
-
[7]
7. Darensbourg, D. J.; Mattew, W. H. Macromolecules, 1995, 28: 7577
-
[8]
8. Zhang, N. Y.; Chen, L. B.; Yang, S. Y.; Yu, A. F.; He, S. J. Acta Polym. Sin., 2000: 741
-
[9]
9. Plesse, C.; Vidal, F.; Randriamahazaka, H.; Teyssi佴, D.; Chevrot, C. Polymer, 2005, 46: 7771
-
[10]
10. Jiang, G. H.; Wang, L.; Yu, H. J.; Dong, X. C.; Chen, C. Polymer, 2006, 47: 12
-
[11]
11. Jiang, G. H.; Wang, L.; Chen, T.; Yu, H. J.; Dong, X. C.; Chen, C. Polymer, 2005, 46: 9501
-
[12]
12. Lu, L. B.; Huang, K. L. J. Polym. Sci. Pol. Chem., 2005, 43: 2468
-
[13]
13. Liu, Y. F.; Huang, K. L.; Peng, D. M.; Wu, H. Polymer, 2006, 47: 8453
-
[14]
14. Flynn, J. H.;Wall, L. A. J. Res. Nat. Bur. Stand. Sect. A, 1966, 70: 487
-
[15]
15. Ozawa, T. B. Chem. Soc. Jpn., 1965, 38: 1881
-
[16]
16. Kissinger, H. E. Anal. Chem., 1957, 29: 1702
-
[17]
17. Akahira, T.; Sunose, T. Res. Rep. Chiba. Inst. Technol., 1971, 16: 22
-
[18]
18. Tang, W. J.; Liu, Y. W.; Zhang, H.;Wang, C. X. Thermochim. Acta, 2003, 408: 39
-
[19]
19. Tang, W. J.; Chen, D. H.; Wang, C. X. AICHE J., 2006, 52: 2211
-
[20]
20. Quan, Z.; Min, J.; Zhou, Q.; Xie, D.; Liu, J.; Wang, S.; Zhao, X.; Wang, F. Macromol. Symp., 2003, 195: 281
-
[21]
21. Vyazovkin, S. J. Comput. Chem., 2001, 22: 178
-
[22]
22. Senum, G. I.; Yang, R. T. J. Therm. Anal. Calorim., 1977, 11: 445
-
[23]
23. Vyazovkin, S. Thermochim. Acta, 2000, 355: 155
-
[24]
24. Opfermann, J. R.; Hammersheim, H. J. Thermochim. Acta, 2003, 397: 1
-
[25]
25. Sahin, O.; Tas, E.; Dolas, H. J. Therm. Anal. Calorim., 2007, 89: 123
-
[26]
26. Liu, B. Y.; Zhao, X. J.; Wang, X. H.;Wang, F. S. J. Appl. Polym. Sci., 2003, 90: 947
-
[27]
27. Vyazovkin, S.; Sbirrazzuoli, N. Macromol. Rapid. Commun., 2006, 27: 1515
-
[28]
28. Coats, A. W.; Redfern, J. P. J. Polym. Sci. Polym. Lett., 1965, 3: 917
-
[29]
29. Coats, A. W.; Redfern, J. P. Nature, 1964, 201: 68
-
[30]
30. Jankovic', B.; Adnad-evic', B.; Jovanovic', J. Thermochim. Acta, 2007, 452: 106
-
[1]
-
-
-
[1]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[2]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[3]
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
-
[4]
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
-
[5]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[6]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[8]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[9]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[10]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[11]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[12]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[13]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[14]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[15]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[16]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[17]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[18]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[19]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[20]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[1]
Metrics
- PDF Downloads(1360)
- Abstract views(3651)
- HTML views(32)