Citation: WANG Jie, ZHUANG Hui-Zhao, XUE Cheng-Shan, LI Jun-Lin, XU Peng. Structure and Formation Mechanism of Sn-Doped ZnO Nanoneedles[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2840-2844. doi: 10.3866/PKU.WHXB20101024 shu

Structure and Formation Mechanism of Sn-Doped ZnO Nanoneedles

  • Received Date: 27 June 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金重大研究项目(90201025, 90301002)资助 (90201025, 90301002)

  • We synthesized Sn -doped ZnO nanoneedles on Si(111) substrates in two steps: sputtering and thermal oxidation. First, a thin layer of the Sn :Zn films was deposited onto the Si(111) substrates ina JCK -500A radio -frequency magnetron sputtering system. Sn-doped ZnO nanoneedles were then grown by simple thermal oxidation of the as-deposited films at 650 oC in Ar atmosphere. The structural, componential, and optical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high -resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, and photoluminescence (PL) spectroscopy. The results reveal that the ZnO nanoneedles doped with 2.5%(x, atomic ratio) Sn are single crystalline with a wurtzite hexa nal structure. The lengths of the grown nanoneedles vary between 1 and 3μm. The root diameters of the needles range between 200 and 500 nm while the tips have an average diameter of about 40 nm. Moreover, most of the Sn-doped ZnO nanoneedles are of high crystal quality. Room temperature PL spectroscopy shows a blue-shift from the bulk bandgap emission, which can be attributed toa Sn composition in the nanoneedles as detected by EDX. Based on the reaction conditions, the growth mechanism of the Sn-doped ZnO nanoneedles was also discussed.

  • 加载中
    1. [1]

      1. Iijima, S. Nature, 1991, 354: 56

    2. [2]

      2. Pan, Z. W.; Dai, Z. R.;Wang, Z. L. Science, 2001, 291: 1947

    3. [3]

      3. Yang, J. H.; Zheng, J. H.; Zhai, H. J.; Yang, X. M.; Yang, L. L.; Liu, Y.; Lang, J. H.; Gao, M. J. Alloy. Compd., 2010, 489: 51

    4. [4]

      4. Qi, J. J.; Yang, Y.; Liao, Q. L.; Huang, Y. H.; Liu, J.; Zhang, Y. Acta Phys. -Chim. Sin., 2009, 25: 1721 [齐俊杰, 杨亚,廖庆 亮, 黄运华,刘娟,张跃.物理化学学报, 2009, 25: 1721]

    5. [5]

      5. Xing, Y. J.; Xi, Z. H.; Zhang, X. D.; Song, J. H.; Wang, R. M.; Xu, J.; Xue, Z. Q.; Yu, D. P. Appl. Phys. A, 2005, 80: 1527

    6. [6]

      6. Ren, X. L.; Han, D.; Chen, D.; Xia, H. L.; Wang, D.; Tang, F. Q. Acta Phys. -Chim. Sin., 2005, 21: 1419 [任湘菱,韩冬, 陈东,夏海龙, 王冬, 唐芳琼.物理化学学报, 2005, 21: 1419]

    7. [7]

      7. Wang, X. D.; Ding, Y.; Summers, C. J.;Wang, Z. L. J. Phys. Chem. B, 2004, 108: 8773

    8. [8]

      8. Liu, D. F.; Xiang, Y. J.; Zhang, Z. X.;Wang, J. X.; Gao, Y.; Song, L.; Liu, L. F.; Dou, X. Y.; Zhao, X. W.; Luo, S. D.; Wang, C. Y.; Zhou, W. Y.; Wang, G.; Xie, S. S. Nanotechnology, 2005, 16: 2665

    9. [9]

      9. Park, W. I.; Yi, G. C.; Kim, M.; Pennycook, S. J. Advanced Materials, 2002, 14: 1841

    10. [10]

      10. Gao, P. X.; Wang, Z. L. Appl. Phys. Lett., 2004, 84: 2883

    11. [11]

      11. Yousefi, R.; Kamaluddin, B. Applied Surface Science, 2009, 255: 9376

    12. [12]

      12. Lin, D. D.; Wu, H.; Pan, W. Advanced Materials, 2007, 19: 3968

    13. [13]

      13. Pan, G. H.; Zhang, Q. F.; Zhang, J. Y.; Wu, J. L. Acta Phys. -Chim. Sin., 2006, 22: 1431 [潘光虎,张琦锋, 张俊艳,吴锦雷.物理化 学学报, 2006, 22: 1431]

    14. [14]

      14. Liu, J.; Zhang, Y.; Qi, J. J.; He, J.; Huang, Y. H.; Zhang, X. M. Acta Phys. -Chim. Sin., 2006, 22: 38 [刘娟,张跃,齐俊杰, 贺建,黄运华, 张晓梅. 物理化学学报, 2006, 22: 38]

    15. [15]

      15. Chen, H. S.; Qi, J. J.; Huang, Y. H.; Liao, Q. L.; Zhang, Y. Acta Phys. -Chim. Sin., 2007, 23: 55 [陈红升, 齐俊杰,黄运华,廖庆 亮,张跃.物理化学学报, 2007, 23: 55]

    16. [16]

      16. Wei, Q.; Li, M. K.; Yang, Z.; Cao, L.; Zhang,W.; Liang, H. W. Acta Phys. -Chim. Sin., 2008, 24: 793 [魏强,李梦轲, 杨志, 曹璐,张威, 梁红伟.物理化学学报, 2008, 24: 793]

    17. [17]

      17. Yang, Y.; Qi, J. J.; Zhang, Y.; Liao, Q. L.; Tang, L. D.; Qin, Z. Applied Physics Letters, 2008, 92: 183117

    18. [18]

      18. Deng, R.; Zhang, X. T.; Zhang, E.; Liang, Y.; Liu, Z.; Xu, H. Y.; Hark, S. K. J. Phys. Chem. C, 2007, 111: 13013

    19. [19]

      19. Su, Y.; Li, L.; Chen, Y. Q.; Zhou, Q. T.; Gao, M.; Chen, Q.; Feng, Y. Journal of Crystal Growth, 2009, 311: 2466

    20. [20]

      20. Li, S. Y.; Lin, P.; Lee, C. Y.; Tseng, T. Y.; Huang, C. J. J. Phys. D- Appl. Phys., 2004, 37: 2274

    21. [21]

      21. Fang, X. S.; Ye, C. H.; Zhang, L. D.; Li, Y.; Xiao, Z. D. Chemistry Letters, 2005, 34: 436

    22. [22]

      22. Ortega, Y.; Fern佗ndez, P.; Piqueras, J.; Piqueras, J. Nanotechnology, 2007, 18: 115606

    23. [23]

      23. Bougrine, A.; Hichou, A. E.; Addou, M.; Ebothe, J.; Kachouane, A.; Troyon, M. Mater. Chem. Phys., 2003, 80: 438

    24. [24]

      24. Wang, D. X.; Zhuang, H. Z.; Xue, C. S.; Shen, J. B.; Liu, H. Materials Letters, 2009, 63: 370

    25. [25]

      25. Panda, S. K.; Singh, N.; Pal, S.; Jacob, C. J. Mater. Sci.-Mater. Electron., 2009, 20: 771


  • 加载中
    1. [1]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    5. [5]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    6. [6]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    7. [7]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    8. [8]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    10. [10]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    13. [13]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    14. [14]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    15. [15]

      Shujun NingZhiyuan WeiZhening ChenTianmin WuLu Zhang . Curvature and defect formation synergistically promote the photocatalysis of ZnO slabs. Chinese Chemical Letters, 2025, 36(7): 111057-. doi: 10.1016/j.cclet.2025.111057

    16. [16]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    17. [17]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    18. [18]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    19. [19]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    20. [20]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

Metrics
  • PDF Downloads(1356)
  • Abstract views(3244)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return