Citation: ZHENG Wen-Rui, XU Jing-Li, XIONG Rui. Density Functional Theory Study on N—O Bond Dissociation Enthalpies[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2535-2542. doi: 10.3866/PKU.WHXB20100931 shu

Density Functional Theory Study on N—O Bond Dissociation Enthalpies

  • Received Date: 4 May 2010
    Available Online: 22 July 2010

    Fund Project: 上海优青科研基金(B-8500-08-0110) (B-8500-08-0110)校启基金(08-22) (08-22)创新项目基金(cx0904009)资助项目 (cx0904009)

  • A number of density functional theory (DFT) methods were compared for the calculation of N—O bond dissociation enthalpies (BDEs) with the experimental values on the basis of the high-precision calculation methods G3 and G3B3. We found that the B3P86 method gave the lowest root of mean square error of 6.36 kJ·mol-1 for calculating N—O BDE of 15 molecules and the correlation coefficient between the theoretical and experimental values was 0.991. We, therefore, used this method to calculate the N—O BDEs of non-aromatic and aromatic compounds. Using natural bond orbital analysis, quantitative relationships between some N—O BDEs and the corresponding N—O bond lengths, atomic charges, bond orders were determined. In addition, we predicted the N—O BDEs of several typical heterocyclic aromatic compounds using the B3P86 method.

  • 加载中
    1. [1]

      1. (a) Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem., 1994, 98: 2744

    2. [2]

      (b) Zhu, X. Q.; Li, H. R.; Ai, T.; Lu, J. Y.; Yang, Y.; Cheng, J. P. Chem.-Eur. J., 2003, 9: 871

    3. [3]

      2. (a) Bordwell, F. H.; Zhang, X. M. Acc. Chem. Res., 1993, 26: 510

    4. [4]

      (b) Larhoven, L. J. J.; Mulder, P.;Wayner, D. D. M. Acc. Chem. Res., 1999, 32: 342

    5. [5]

      3. (a) Sun, Y. M.; Zhang, H. Y.; Chen, D. Z.; Liu, C. B. Org. Lett., 2002, 4: 2909

    6. [6]

      (b) Wang, L. F.; Zhang, H. Y. Bioorg. Med. Chem. Lett., 2003, 13: 3789

    7. [7]

      (c) Yao, X. Q.; Hou, X. J.; Jiao, H.; Xiang, H. M.; Li, Y. W. J. Phys. Chem. A, 2003, 107: 9991

    8. [8]

      (d) Turecek, F. J. Am. Chem. Soc., 2003, 125: 5954 (e) Shen, L.; Zhang, H. Y.; Ji, H. F. Org. Lett., 2005, 7: 243

    9. [9]

      4. (a) Feng, Y.; Liu, L.; Wang, J. T.; Huang, H.; Guo, Q. X. J. Chem. Inf. Comput. Sci., 2003, 43: 2005

    10. [10]

      (b) Qi, X. J.; Li, Z.; Fu, Y.; Guo, Q. X.; Liu, L. Organometallics, 2008, 27: 2688

    11. [11]

      5. (a) Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L. J. Phys. Chem. A, 2001, 105: 6750

    12. [12]

      (b) Song, K. S.; Cheng, Y. H.; Fu, Y.; Liu, L.; Li, X. S.; Guo, Q. X. J. Phys. Chem. A, 2002, 106: 6651

    13. [13]

      6. (a) Pratt, D. A.; Mills, J. H.; Porter, N. A. J. Am. Chem. Soc., 2003, 125: 5801

    14. [14]

      (b) Zhang, H. Y.; Sun, Y. M.; Wang, X. L. Chem. Eur. J., 2003, 9: 502

    15. [15]

      (c) Lin, C. L.; Lai, C. H.; Chu, S. Y. Chem. Phys. Lett., 2002, 359: 355

    16. [16]

      (d) Zhang, H. Y.; Sun, Y. M.; Chen, D. Z. Chin. Chem. Lett., 2002, 13: 531

    17. [17]

      (e) Yao, X. Q.; Hou, X. J.; Wu, G. S.; Xu, Y. Y.; Xiang, H. W.; Jiao, H.; Li, Y. W. J. Phys. Chem. A, 2002, 106: 7184

    18. [18]

      (f) Lue, J. M.;Wittbrodt, J. M.;Wang, K.; Wen, Z.; Schlegel, H. B.; Wang, P. G.; Cheng, J. P. J. Am. Chem. Soc., 2001, 123: 2903

    19. [19]

      (g) Feng, Y.; Liu, L.; Wang, J. T.; Zhao, S. W.; Guo, Q. X. J. Org. Chem., 2004, 69: 3129

    20. [20]

      7. mes, J. R. B.; Ribeiro da Silva, M. D. M. C.; Ribeiro da Silva, M. A. V. Chem. Phys. Lett., 2006, 429: 18

    21. [21]

      8. Luo, Y. R. Handbook of bond dissociation energies. Beijing: Science Press, 2005: 212-219

    22. [22]

      [罗渝然. 化学键能数据手册. 北京: 科学出版社, 2005: 212-219]

    23. [23]

      9. Acree Jr.,W. E.; Tucker, S. A.; Ribeiro da Silva, M. D. M. C.; Matos, M. A. R.; ncalves, J. M.; Ribeiro da Silva, M. A. V.; Pilcher, G. J. Chem. Thermody., 1995, 27: 391

    24. [24]

      10. mes, J. R. B.; Sousa, E. A.; ncalves, J. M.; Monte, M. J. S.; mes, P.; Pandey, S.; Acree Jr.,W. E.; Ribeiro da Silva, M. D. M. C. J. Phys. Chem. B, 2005, 109: 16188

    25. [25]

      11. Ribeiro da Silva, M. D. M. C.; mes, J. R. B.; ncalves, J. M.; Sousa, E. A.; Pandey, S.; Acree Jr.,W. E. Org. Biomol. Chem., 2004, 2: 2507

    26. [26]

      12. Ribeiro da Silva, M. D. M. C.; mes, J. R. B.; ncalves, J. M.; Sousa, E. A.; Pandey, S.; Acree Jr., W. E. J. Org. Chem., 2004, 69: 2785

    27. [27]

      13. (a) Becke, A. D. Phys. Rev. A, 1988, 38: 3098 (b) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785

    28. [28]

      14. Xu, X.; ddard, W. A. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 2673

    29. [29]

      15. Boese, A. D.; Martin, J. M. L. J. Chem. Phys., 2004, 121: 3405

    30. [30]

      16. Perdew, J. P. Phys. Rev. B, 1986, 33: 8822

    31. [31]

      17. Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A, 2004, 108: 6908

    32. [32]

      18. Dahlke, E. E.; Truhlar, D. G. J. Phys. Chem. B, 2005, 109: 15677

    33. [33]

      19. Zhao, Y.; Truhlar, D. G. Phys. Chem. Chem. Phys., 2005, 7: 2701

    34. [34]

      20. Lynch, B. J.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A, 2003, 107: 1384

    35. [35]

      21. Zhao, Y.; nzalez-Garcia, N.; Truhlar, D. G. J. Phys. Chem. A, 2005, 109: 2012

    36. [36]

      22. Grimme, S. J. Chem. Phys., 2006, 124: 10342

    37. [37]

      23. Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys., 2006, 8: 4398

    38. [38]

      24. Kang, J. K.; Musgrave, C. B. J. Chem. Phys., 2001, 115: 11040

    39. [39]

      25. Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B, 1996, 54: 16533

    40. [40]

      26. Hoe, W. M.; Cohen, A. J.; Handy, N. C. Chem. Phys. Lett., 2001, 341: 319

    41. [41]

      27. Schultz-Fademrecht, C.; Tius, M. A.; Grimme, S.; Wibbeling, B.; Hoppe, D. Angew. Chem. Int. Edit., 2002, 41: 1532

    42. [42]

      28. (a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev., 1988, 88: 899

    43. [43]

      (b) Cheng, Y. H.; Zhao, X.; Song, K. S.; Liu, L.; Guo, Q. X. J. Org. Chem., 2002, 67: 6638

    44. [44]

      29. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03. Revision A.01. Pittsburgh, PA: Gaussian Inc., 2003

    45. [45]

      30. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys., 1998, 109: 7764

    46. [46]

      31. Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys., 1999, 110: 7650

    47. [47]

      32. Zheng, W. R.; Fu, Y.; Wang, H. J.; Guo, Q. X. Chin. J. Org. Chem., 2008, 28: 459

    48. [48]

      [郑文锐,傅尧,王华静,郭庆祥. 有机化学, 2008, 28: 459]

    49. [49]

      33. Acree Jr., W. E.; Pilcher, G.; Ribeiro da Silva, M. D. M. C. J. Phys. Chem. Ref. Data, 2005, 34: 553

    50. [50]

      34. Glendening, E. D.;Weinhold, F. J. Comput. Chem., 1998, 19: 610


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    8. [8]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    9. [9]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    10. [10]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    11. [11]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    12. [12]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    13. [13]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    17. [17]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    18. [18]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    19. [19]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    20. [20]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

Metrics
  • PDF Downloads(1289)
  • Abstract views(3435)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return