Citation: LI Jin, XU Zhao-Yi, LI Jiu-Yi, JIAO Di. Characteristics of theMicrobiologically Influenced Corrosion of 304 Stainless Steel in Reclaimed Water Enviroment[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2638-2646. doi: 10.3866/PKU.WHXB20100927 shu

Characteristics of theMicrobiologically Influenced Corrosion of 304 Stainless Steel in Reclaimed Water Enviroment

  • Received Date: 24 February 2010
    Available Online: 27 September 2010

    Fund Project: 大唐国际发电股份有限公司项目(TX06-15)资助 (TX06-15)

  • The growth characteristics of sulfate reducing bacteria (SRB) in real reclaimed water were studied. Characteristics of the biofilm and its main components on the surface of stainless steel 304 (SS304) sample immersed in reclaimed water with SRB, the electrochemical behavior of the interface between the SS304 sample and the biofilm were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS). The results show that this strain of SRB can survive in reclaimed water. A biofilm formed on the surface of SS304 and consisted of microbial cells, a carbohydrate component from extracellular polymeric substances (EPS) and a corrosion product such as FeS. During the early immersion period (before 7d), the impedance value mainly originated from the contribution of passivation film on the SS304 electrode surface. During the later immersion period (after 14 d), the impedance value was mainly due to the combined effect of the passivation filmand the biofilmon the SS304 electrode surface.

  • 加载中
    1. [1]

      1. Beech,I. B.; Sunner, J. Biocorrosion, 2004, 15: 181

    2. [2]

      2. Moreno, D. A.; Ibars, J. R.; Ranninger, C.; Videla, H. A. Corrosion, 1992, 48(3):226

    3. [3]

      3. Stott, J. F. D. Corrosion Sci., 1993, 35: 667

    4. [4]

      4. Wingender, J.; Neu, T. R.; Flemming, H. C. Microbial extracellular polymerics substances: characterisation, structure and function. Berlin: Springer Press, 1999

    5. [5]

      5. Sheng, X. X.; Ting, Y. P.; Pehkonen, S. O. Corrosion Sci., 2007, 49: 2159

    6. [6]

      6. Dexter, S. C. Corrosion test and standard: application and interpretation. In: Baboian, R. ASTM. Philadephia: PA, 1995

    7. [7]

      7. Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. F. Appl. Environ. Microbiol., 2002, 19(1): 65

    8. [8]

      8. nza'lez, J. E. G.; Santana, F. J. H.; Mirza-Rosca, J. C. Corrosion Sci., 1998, 40: 2141

    9. [9]

      9. Buchanan, R. A.; Stansbury, E. E. Fundamentals of coupled electrochemical reactions as related to microbially influenced corrosion [C]// Dowling, N. J.; Mittleman, M. W.; Danko, J. C. Microbially influenced corrosion and biodeterioration. Knoxville: TN, 1991: 5, 33

    10. [10]

      10. Videla, H. A.; de Mele, M. F. L.; Brankevich, G. J. Biofouling and corrosion of stainless steel and 70/30 copper nickel samples after several weeks of immersion in seawater [C]//Videla, H. NACE International, Houston, 1989

    11. [11]

      11. Videla, H. A. Int. Biodeterior. Biodegrad., 2001, 48:176

    12. [12]

      12. Postgate, J. R. The sulfate reducing bacteria. Cambridge: CUPress, 1984

    13. [13]

      13. Ma, F.; Ren, N. Q.; Yang, J. X. Pollution control microbiology experiment. Harbin: Harbin Institute of Technology Press, 2002 [马放,任南琪, 杨基先. 污染控制微生物学实验.哈尔滨: 哈尔 滨工业大学出版社, 2002]

    14. [14]

      14. Hardy, J. A. Br. Corros. J., 1983, 18(4): 190

    15. [15]

      15. von Wolzogen Kukr, C. A. H.; van Vlugt, L. S. Water, 1934, 18: 147

    16. [16]

      16. Marcus, P. Electrochim. Acta, 1998, 43(1-2): 109

    17. [17]

      17. Little, B.; Wagner, P. Electrochim. Acta, 1992, 37(12): 2185

    18. [18]

      18. Sanders, P. F.; Hamilton, W. A. Biological and corrosion activities of sulphate——reducing bacteria within natural biofilms [C]// Dexter, S. C. Biologically induced corrosion. NACE International, Houston: TX, 1986: 47

    19. [19]

      19. Beech, I. B. Microbiol. Today, 2003, 30: 115

    20. [20]

      20. Fang, H. H. P.; Xu, L. C.; Chan, K. Y. Water Res., 2002, 36: 4709

    21. [21]

      21. Beech, I. B.; Sunner, J. Curr. Opin. Biotechnol., 2004, 15(3): 181

    22. [22]

      22. Kinzler, K.; Gehrke, T.; Telegdi, J.; Sand, W. Hydrometall, 2003, 71: 83

    23. [23]

      23. Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Appl. Microbiol. Biotechnol., 2003, 63: 239

    24. [24]

      24. Chler, S. M.; Vogel, A.; Mathiece, H. J. Corrosion Sci., 1991, 32: 925


  • 加载中
    1. [1]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    4. [4]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    5. [5]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    6. [6]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    7. [7]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    13. [13]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    14. [14]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    15. [15]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    16. [16]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    17. [17]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    18. [18]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

Metrics
  • PDF Downloads(1620)
  • Abstract views(3157)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return