Citation: SUN Qian, WANG Jin-Ting, ZHANG Li-Min, YANG Mao-Ping. Photoinduced Electron and Hydrogen Transfer Reactions of Thioxanthone with Amines, Phenols and Alcohols[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2481-2488. doi: 10.3866/PKU.WHXB20100925 shu

Photoinduced Electron and Hydrogen Transfer Reactions of Thioxanthone with Amines, Phenols and Alcohols

  • Received Date: 12 April 2010
    Available Online: 19 July 2010

    Fund Project: 国家自然科学基金(20673108)资助项目 (20673108)

  • The quenching reactions of triplet thioxanthone (TX) by a series of amines, phenols, and alcohols were investigated by laser flash photolysis in deoxygenated acetonitrile. We obtained corresponding transient absorption spectra and quenching rate constants (kq). Fromchanges in the transient absorption spectra, we determine that the electron transfer reactions occur between triplet TX and amines without an active hydrogen while electron/proton transfer reactions occur between triplet TX and amines with an active hydrogen. The appearance of hydrogenated radicals can be regarded as evidence for hydrogen transfer reactions in the TX/phenol and TX/alcohol systems. In the TX/amine systems, the quenching rate constants decreased with an increase in the free energy change (ΔG). This indicates that electron transfer reactions influence the quenching of triplet TX. In the TX/phenol systems, the quenching rate constants decreased with an increase in ΔG firstly, then increased with an increase in phenol cation acidity. This can be explained by considering that charge transfer and hydrogen transfer may play separate but important roles. In the TX/ alcohol system, the quenching rate constants decreased with an increase in the α-C—H bonding energy of alcohols, and this indicates that the α-C—H bonding energy is a key factor during triplet TX quenching. By comparison with previous studies about the quenching reactions of triplet xanthone (XT) and fluorenone (FL) by a series of amines, phenols, and alcohols, it is established that because of a discrepancy in molecular configurations the quenching rate constants decrease according to the following order: XT, TX, and FL.

  • 加载中
    1. [1]

      1. Morlet-Savary, F.; Ley, C.; Jacques, P.; Wieder, F.; Fouassier, J. P. J. Photochem. Photobiol. A-Chem., 1999, 126: 7

    2. [2]

      2. Allonas, X.; Ley, C.; Bibaut, C.; Jacques, P.; Fouassier, J. P. Chem. Phys. Lett., 2000, 322: 483

    3. [3]

      3. Okano, L. T.; Barros, T. C.; Chou, D. T. H.; Bennet, A. J. J. Phys. Chem. B, 2001, 105: 2122

    4. [4]

      4. Satzger, H.; Schmidt, B.; Root, C.; Zinth, W.; Fierz, B.; Krieger, F.; Kiefhaber, T.; Gilch, P. J. Phys. Chem. A, 2004, 108: 10072

    5. [5]

      5. Zhu, Q. Q.; Schnabel, W. J. Chem. Soc. Faraday Trans., 1991, 87: 1531

    6. [6]

      6. Yates, S. F.; Schuster, G. B. J. Org. Chem., 1984, 49: 3349

    7. [7]

      7. Inbar, S.; Linschitz, H.; Cohen, S. G. J. Am. Chem. Soc., 1980, 102: 1419

    8. [8]

      8. Guttenplan, J. B.; Cohen, S. G. J. Am. Chem. Soc., 1972, 94: 4040

    9. [9]

      9. Simon, J. D.; Peters, K. S. J. Am. Chem. Soc., 1981, 103: 6403

    10. [10]

      10. Wang, J. T.; Pan, Y.; Zhang, L. M.; Yu, S. Q. Chinese Journal of Chemical Physics, 2007, 20: 395 [王金婷,潘洋, 张立敏, 俞书勤.化学物理学报, 2007, 20: 395 ]

    11. [11]

      11. Stevenson, J. P.; DeMaria, D.; Reilly, D.; Purvis, J. D.; Graham, M. A.; Lockwood, G.; Drozd, M.; O忆Dwyer, P. J. Cancer Chemother. Pharmacol., 1999, 44: 228

    12. [12]

      12. Izbicka, E.; Lawrence, R.; Davidson, K.; Rake, J. B.; VonHoff, D. D. Invest. New Drugs, 1999, 16: 221

    13. [13]

      13. Pan, Y.; Fu ,Y.; Liu, S. X.; Yu, H. Z.; Gao, Y. H.; Guo, Q. X.; Yu, S. Q. J. Phys. Chem. A, 2006, 110: 7316

    14. [14]

      14. Dalton, J. C.; Mont mery, F. C. J. Am. Chem. Soc., 1974, 96: 6230

    15. [15]

      15. Ferreira, G. C.; Schmitt, C. C.; Neumann, M. G. J. Braz. Chem. Soc., 2006, 17: 905

    16. [16]

      16. Scigalski, F.; Paczkowski, J. Macromol. Chem. Phys., 2008, 209: 1872

    17. [17]

      17. Das, D.; Nath, D. N. J. Phys. Chem. A, 2008, 112: 11619

    18. [18]

      18. Bordwell, F. G.; Cheng, J. P. J. Am. Chem. Soc., 1991, 113: 1736

    19. [19]

      19. Denisov, E. T.; Denisova, T. G. Handbook of antioxidants. Boca Raton: CRC Press, 2000: 24

    20. [20]

      20. Wang, J. T. Laser flash photolysis studies on some organic molecules [D]. Hefei: University of Science and Technology of China, 2009 [王金婷.若干有机分子的激光闪光光解研究[D]. 合肥:中国科学技术大学, 2009]

    21. [21]

      21. Pan, Y.; Sheng, Z. Y.; Ye, X. D.; Ao, Z.; Yu, S. Q. J. Photochem. Photobiol. A-Chem., 2005, 174: 98

    22. [22]

      22. Pan, Y.; Sheng, Z. Y.; Li, J.; Dai, J. H.; Chu, G. S.; Yu, S. Q. Acta Chim. Sin., 2004, 62: 1293 [潘洋, 盛震宇,李江,戴静华, 储高升, 俞书勤.化学学报, 2004, 62: 1293]

    23. [23]

      23. Murov, S. L.; Carmichael, I.; Hug, G. Handbook of photochemistry. 2nd ed. NewYork: Marcel Dekker, 1993: 111, 346-348

    24. [24]

      24. Corrales, T.; Peinado, C.; Catalina, F.; Neumann, M. G.; Allen, N. S.; Rufs, A. M.; Encinas, M. V. Polymer, 2000, 41: 9103

    25. [25]

      25. Bartholomew, R. F.; Davidson, R. S.; Lambeth, P. F.; Mckellar, J. F.; Turner, P. H. J. Chem. Soc. Perkin Trans., 1972, 2: 577

    26. [26]

      26. Das, P. K.; Encinas, M. V.; Steenken, S.; Scaiano, J. C. J. Am. Chem. Soc., 1981, 103: 4162

    27. [27]

      27. Yoshihara, T.; Yamaji, M.; Itoh, T.; Shizuka, H.; Shimokage, T.; Tero-Kubota, S. Phys. Chem. Chem. Phys., 2000, 2: 993

    28. [28]

      28. Rehm, D.; Weller, A. Isr. J. Chem., 1970, 8: 259

    29. [29]

      29. Bard, A. J.; Faulkner, L. R. Electrochemical methods, fundamentals and applications. NewYork: John Wiley, 1980: 701

    30. [30]

      30. (a) Nocera, D. G.; Gray, H. B. J. Am. Chem. Soc., 1981, 103: 7349 (b) Dvorak, V.; Nemec. I.; Zyka, J. J. Microchem. J., 1967, 12: 99 (c) Pan, Y.; Tang, W. J.; Yu, T. Q.; Wang, J. T.; Fu, Y.; Wang, G. W.; Yu, S. Q. J. Lumin., 2007, 126: 421 (d) Nelsen, S. F.; Hinz, P. J. J. Am. Chem. Soc., 1972, 94: 7114

    31. [31]

      31. Herkatroeter, W. G.; Lamula, A. A.; Hammond, G. S. J. Am. Chem. Soc., 1964, 86: 4537

    32. [32]

      32. Cao, X. Z.; Song, T. Y.;Wang, X. Q. Inorganic chemistry. 3rd ed. Beijing: Higher Education Press, 1994: 114-116 [曹锡章, 宋天 佑,王杏乔.无机化学.北京:高等教育出版社, 1994: 114-116]


  • 加载中
    1. [1]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    3. [3]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    4. [4]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    5. [5]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    8. [8]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    9. [9]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    14. [14]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    15. [15]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    16. [16]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    17. [17]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    18. [18]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

Metrics
  • PDF Downloads(1127)
  • Abstract views(2972)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return