Citation: YU Xiao-Chun, LIN Ke, HU Nai-Yin, ZHOU Xiao-Guo, LIU Shi-Lin. Effects of Salts on theMicrostructure ofMethanol[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2473-2480. doi: 10.3866/PKU.WHXB20100922 shu

Effects of Salts on theMicrostructure ofMethanol

  • Received Date: 25 May 2010
    Available Online: 15 July 2010

    Fund Project: 国家自然科学基金(20873131, 20928002) (20873131, 20928002)国家重点基础研究发展规划项目(973) (2007CB815204)资助 (973) (2007CB815204)

  • We studied the effects of salts on the microstructure of liquid methanol using the Raman spectra. We compared the excess Raman spectra of different methanolic salt solutions in the O—H and C—O stretching regions. These regions reflect the interactions between anions (cations) and methanol molecules. In the O—H stretching region, the excess spectra show that the anions interact with methanol molecules by weak hydrogen bonding and the strength of the hydrogen bonds decrease according to the order: CH3OH-CH3OH>Cl--CH3OH>NO- 3 -CH3OH>ClO- 3 -CH3OH. Additionally, no interactions between cations and methanol molecules are apparent, as determined after analysis of this region. In the C—O stretching region, the excess Raman spectra show the interactions between anions (cations) and methanol molecules. The C—O stretching vibration frequencies of methanol that interact with the anions and cations increase according to the order: CH3—OH (anions)3—OH (bulk)3—OH (cations). According to the excess Raman spectra in the C—O stretching region, we fitted the Raman spectra and used the fitting results to determine the solvation numbers in the first solvation shell of the ions. The Raman spectra show that the ions do not affect the microstructure of liquid methanol beyond the first solvation shell at this concentration (~0.005).

  • 加载中
    1. [1]

      1. Smedley, S. I. Interpretation of ionic conductivity in liquids. New York: Plenum, 1980

    2. [2]

      2. Marcus, Y. Ion solvation. Chichester, U. K.: Wiley, 1986

    3. [3]

      3. Yamauchi, S.; Kanno, H. Chem. Phys. Lett., 1989, 154(3): 248

    4. [4]

      4. Yamauchi, S.; Kanno, H. J. Phys. Chem., 1990, 94(17): 6594

    5. [5]

      5. Kanno, H.; Yamauchi, S. J. Raman Spectrosc., 1993, 24(7): 403

    6. [6]

      6. Honshoh, M.; Kanno, H.; Ueda, T. J. Raman Spectrosc., 1995, 26 (4): 289

    7. [7]

      7. Kanno, H.; Honsho, M.; Yamauchi, S. Z. Naturforsch., 1995, 50a: 257

    8. [8]

      8. Hidaka, F.; Yoshimura, Y.; Kanno, H. J. Solution Chem., 2003, 32 (3): 239

    9. [9]

      9. Abe, N.; Ito, M. J. Raman Spectrosc., 1978, 7(3): 161

    10. [10]

      10. Symons, M. C. R. J. Chem. Soc. Faraday Trans., 1983, 79: 1273

    11. [11]

      11. Mochizuki, S.; Wakisaka, A. J. Phys. Chem. A, 2002, 106(20): 5095

    12. [12]

      12. Jorgensen, W. L.; Bi t, B.; Chandrasekhar, J. J. Am. Chem. Soc., 1982, 104(17): 4584

    13. [13]

      13. Impey, R. W.; Sprik, M.; Klein, M. L. J. Am. Chem. Soc., 1987, 109(20): 5900

    14. [14]

      14. Pagliai, M.; Cardini, G.; Schettino, V. J. Phys. Chem. B, 2005, 109 (15): 7475

    15. [15]

      15. Torii, H. J. Phys. Chem. A, 1999, 103(15): 2843

    16. [16]

      16. Lin, K.; Zhou, X. G.; Luo, Y.; Liu, S. L. J. Phys. Chem. B, 2010, 114(10): 3567

    17. [17]

      17. Dixit, S.; Poon, W. C. K.; Crain, J. J. Phys.-Condes. Matter, 2000, 12(21): L323

    18. [18]

      18. Musso, M.; Torii, H.; Ottaviani, P.; Asenbaum, A.; Giorgini, M. G. J. Phys. Chem. A, 2002, 106(43): 10152

    19. [19]

      19. Max, J. J.; Chapados, C. J. Chem. Phys., 2009, 130(12): 124513

    20. [20]

      20. Miller, A. G.; MacKlin, J. W. J. Phys. Chem., 1985, 89(7): 1193

    21. [21]

      21. Marcus, Y.; Hefter, G. Chem. Rev., 2006, 106(11): 4585

    22. [22]

      22. Li, Q. Z.; Wu, G. S.; Yu, Z. W. J. Am. Chem. Soc., 2006, 128(5): 1438

    23. [23]

      23. Li, Q. Z.; Wang, N. N.; Zhou, Q.; Sun, S. Q.; Yu, Z. W. Appl. Spectrosc., 2008, 62(2): 166

    24. [24]

      24. Wang, N. N.; Jia, Q.; Li, Q. Z.; Yu, Z. W. J. Mol. Struct., 2008, 883-884: 55

    25. [25]

      25. Zhang, Q. G.; Wang, N. N.; Yu, Z. W. J. Phys. Chem. B, 2010, 114(14): 4747

    26. [26]

      26. Yu, Y. Q.; Lin, K.; Zhou, X. G.; Wang, H.; Liu, S. L.; Ma, X. X. J. Raman Spectrosc., 2007, 38(9): 1206

    27. [27]

      27. Yu, Y. Q.; Lin, K.; Zhou, X. G.; Wang, H.; Liu, S. L.; Ma, X. X. J. Phys. Chem. C, 2007, 111(25): 8971

    28. [28]

      28. Barthel, J.; Neueder, R.; Poepke, H.; Wittmann, H. J. Solution Chem., 1998, 27(12): 1055

    29. [29]

      29. Wahab, A.; Mahiuddin, S. Can. J. Chem., 2002, 80(2): 175

    30. [30]

      30. Ihmels, E. C.; Safarov, J. T. J. Chem. Thermodyn., 2006, 38(11): 1443

    31. [31]

      31. Wawer, J.; Krakowiak, J.; Grzybkowski, W. J. Chem. Thermodyn., 2008, 40(8): 1193

    32. [32]

      32. Wahab, A.; Mahiuddin, S. J. Chem. Eng. Data, 2009, 54(2): 436

    33. [33]

      33. Stygar, J.; Zukowska, G.; Wieczorek, W. Solid State Ionics, 2005, 176(35-36): 2645

    34. [34]

      34. Wang, Z. X.; Huang, B. Y.; Wang, S. M.; Xue, R. J.; Huang, X. J.; Chen, L. Q. Electrochim. Acta, 1997, 42(17): 2611

    35. [35]

      35. Markarian, S. A.; Gabrielian, L. S.; Zatikyan, A. L.; Bonora, S.; Trinchero, A. Vib. Spectro., 2005, 39(2): 220

    36. [36]

      36. Ozutsumi, K.; Ohtaki, H. Pure Appl. Chem., 2004, 76(1): 91

    37. [37]

      37. Yamagami, M.; Wakita, H.; Yamaguchi, T. J. Chem. Phys., 1995, 103(18): 8174

    38. [38]

      38. Megyes, T.; Grosz, T.; Radnai, T.; Bako, I.; Palinkas, G. J. Phys. Chem. A, 2004, 108(35): 7261

    39. [39]

      39. Soper, A. K.; Weckstr觟m, K. Biophys. Chem., 2006, 124(3): 180

    40. [40]

      40. Smith, J. D.; Saykally, R. J.; Geissler, P. L. J. Am. Chem. Soc., 2007, 129(45): 13847

    41. [41]

      41. Omta, A. W.; Kropman, M. F.; Woutersen, S.; Bakker, H. J. J. Chem. Phys., 2003, 119(23): 12457


  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    6. [6]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    7. [7]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    9. [9]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    11. [11]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    12. [12]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    15. [15]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    16. [16]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    20. [20]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

Metrics
  • PDF Downloads(1083)
  • Abstract views(3237)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return