Citation: LIU Yu-Liang, YOU Cui-Rong, LI Yang, HE Tao, ZHANG Xiang-Qin, SUO Zhang-Huai. Preparation of Au@TiO2 Catalyst Using Escherichia Coil as the Template and Its Oxidation Reaction Activity toward CO[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2455-2460. doi: 10.3866/PKU.WHXB20100909 shu

Preparation of Au@TiO2 Catalyst Using Escherichia Coil as the Template and Its Oxidation Reaction Activity toward CO

  • Received Date: 17 March 2010
    Available Online: 12 July 2010

    Fund Project: 国家自然科学基金(20473070, 20973148)资助项目 (20473070, 20973148)

  • Many microorganisms can adsorb metal ions strongly and even reduce them to their metal states. We studied the adsorption of ld nanoparticles on Escherichia coil (DH5α) to form Au@DH5α. Titanium tetrabutoxide was added to Au@DH5αto prepare Au@DH5α-Ti(OH)4 by hydrolysis. The DH5αtemplate was removed by calcination in air to obtain the Au@TiO2 catalyst. These materials were characterized by N2 adsorption, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), thermogravimetry-differential thermal analysis (TG-DTA), and transmission electron microscopy (TEM). The results show that the ld catalyst maintains a rod-like structure similar to DH5αand the porous structure of the titanium oxide prepared using DH5αas a biological template can prevent the aggregation of ld nanoparticles to some extent. With higher amounts of DH5αdosage, smaller ld nanoparticles were obtained and the surface plasmon absorption of ld nanoparticles shifted toward shorter wavelengths. The obtained ld catalyst has a larger surface area than the catalyst prepared by the impregnation method. However, this increases the coke content of the catalyst. Catalytic activity was evaluated by the CO oxidation reaction. We found that with a DH5αdosage of 100 or 150 mL, the obtained ld catalyst can convert CO to CO2 completely at 80 ℃.

  • 加载中
    1. [1]

      1. Hutchings, G. J. J. Catal., 1985, 96(1): 292

    2. [2]

      2. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett.,1987, 16: 405

    3. [3]

      3. Bond, G. C.; Thompson, D. T. ld Bull., 2000, 33(2): 41

    4. [4]

      4. Corti, C. W.; Holliday, R. J.; Thompson, D. T. Top. Catal., 2007,44(1-2): 331

    5. [5]

      5. Corti, C. W.; Holliday, R. J.; Thompson, D. T. Appl. Catal. A,2005, 291(1-2): 253

    6. [6]

      6. Baron, R.; Willner, B.; Willner, I. Chem. Commun., 2007, (4): 323

    7. [7]

      7. Horovitz, O.; Tomoaia, G.; Mocanu, A.; Yupsanis, T.; Tomoaia-Cotisel, M. ld Bull., 2007, 40(3): 213

    8. [8]

      8. Yang, F.; Guo, Z. J.; Bai, Y.; Huang, Z.; Zheng,W. J.Photographic Sci. Photochem., 2006, 24(2): 118 [杨芳,郭振江,白燕,黄峙,郑文杰.感光科学与光化学, 2006, 24(2):118]

    9. [9]

      9. Jin, M. S.; Yuan, H. Q.; Jing, J. R.; Suo, Z. H.; Sun, L. Chem. J.Chin. Univ., 2009, 30(6): 1183 [金明善,原慧卿,荆济荣, 索掌怀, 孙力.高等学校化学学报, 2009, 30(6): 1183]

    10. [10]

      10. Huang, H. Z.; Yuan, Q.; Yang, X. R. J. Colloid Interface Sci.,2005, 282(1): 26

    11. [11]

      11. Liu, K. Z.; Shi, L. L.; Jin, M. S.; Suo, Z. H. J. Mol. Catal. (China),2009, 23(5): 436 [刘克增, 石玲玲,金明善,索掌怀.分子催化,2009, 23(5): 436]

    12. [12]

      12. Gericke, M.; Pinches, A. ld Bull., 2006, 39(1): 22

    13. [13]

      13. Chen, X. C.; Hu, S. P.; Shen, C. F.; Dou, C. M.; Shi, J. Y.; Chen, Y.X. Bioresour. Technol., 2009, 100(1): 330

    14. [14]

      14. Agnihotri, M.; Joshi, S.; Kumar, A. R.; Zinjarde, S.; Kulkarni, S.Mater. Lett., 2009, 63(15): 1231

    15. [15]

      15. Sugunan, A.; Melin, P.; Schnurer, J.; Hilborn, J. G.; Joydeep, D.Adv. Mater., 2007, 19(1): 77

    16. [16]

      16. Liu, Y. Y.; Fu, J. K.; Hu, R. Z.; Yao, B. X.; Weng, S. Z. ActaMicrobiol. Sin., 1999, 39(3): 260 [刘月英, 傅锦坤,胡荣宗,姚炳新,翁绳周.微生物学报, 1999, 39(3): 260]

    17. [17]

      17. Kuo, W. S.; Wu, C. M.; Yang, Z. S.; Chen, S. Y.; Chen, C. Y.;Huang, C. C.; Li, W. M.; Sun, C. K.; Yeh, C. S. Chem. Commun.,2008, (37): 4430

    18. [18]

      18. Fu, J. K.; Liu, Y. Y.; Hu, R. Z.; Zegn, J. L.; Xu, P. P.; Lin, Z. Y.;Yao, B. X.;Weng, S. Z. Acta Phys. -Chim. Sin., 1998, 14(9): 769[傅锦坤,刘月英, 胡荣宗, 曾金龙,许翩翩,林种玉, 姚炳新,翁绳周. 物理化学学报, 1998, 14(9): 769]

    19. [19]

      19. Kumara, M. T.; Tripp, B. C.; Muralidharan, S. Chem. Mater.,2007, 19(8): 2056

    20. [20]

      20. Kumara, M. T.; Muralidharan, S.; Tripp, B. C. J. Nanosci.Nanotechnol., 2007, 7(7): 2260

    21. [21]

      21. Nomura, T.; Morimoto, Y.; Tokumoto, H.; Konishi, Y. Mater.Lett., 2008, 62(21-22): 3727

    22. [22]

      22. Nomura, T.; Morimoto, Y.; Ishikawa, M.; Tokumoto, H.; Konishi,Y. Adv. Powder Technol., 2010, 21(1): 8

    23. [23]

      23. Suo, Z. H.; Weng, Y. G.; Jin, M. S.; L俟, A. H.; Xu, J. G.; An, L. D.Chin. J. Catal., 2005, 26(11): 1022 [索掌怀,翁永根,金明善,吕爱花,徐金光, 安立敦.催化学报, 2005, 26(11): 1022]

    24. [24]

      24. Zanella, R.; Giorgio, S.; Shin, C. H.; Henry, C. R.; Louis, C.J. Catal., 2004, 222(2): 357

    25. [25]

      25. Link, S.; El-Sayed, M. A. J. Phys. Chem. B, 1999, 103(21): 4212

    26. [26]

      26. Moreau, F.; Bond, G. C.; Taylor, A. O. J. Catal., 2005, 231(1):105

    27. [27]

      27. Delannoy, L.; El Hassan, N.; Musi, A.; Le To, N. N.; Krafft, J. M.;Louis, C. J. Phys. Chem. B, 2006, 110(45): 22471

    28. [28]

      28. Bore, M. T.; Mokhonoana, M. P.; Ward, T. L.; Coville, N. J.;Datye, A. K. Microporous Mesoporous Mat., 2006, 95(1-3): 118


  • 加载中
    1. [1]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    2. [2]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    13. [13]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    14. [14]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    18. [18]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    19. [19]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    20. [20]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

Metrics
  • PDF Downloads(1161)
  • Abstract views(2991)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return