Citation: CHEN Zhao-Yang, ZHAO Feng-Ming, MA Chun-An, QIAO Yun. Ultrasonic-Assisted Preparation of Bimodal Mesoporous HollowGlobal Tungsten Carbide and Its Electrocatalytic Performance[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2569-2574. doi: 10.3866/PKU.WHXB20100906 shu

Ultrasonic-Assisted Preparation of Bimodal Mesoporous HollowGlobal Tungsten Carbide and Its Electrocatalytic Performance

  • Received Date: 15 January 2010
    Available Online: 9 July 2010

    Fund Project: 浙江省重大科技专项国际合作项目(2008C14040) (2008C14040)浙江省自然科学基金重点项目(Z4100790) (Z4100790)国家自然科学基金(20476097)资助 (20476097)

  • Hollowspherical ammoniummetatungstate (AMT), as a precursor, was prepared by an ultrasonic method. Tungsten carbide (WC) was prepared by a gas-solid reaction in an atmosphere of CO/H2 at 700-900oC. Microspheres were fractured by ultrasonic dispersion for 1 h. X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry-differential thermal analysis (TG-DTA), Brunauer-Emmett-Teller (BET) surface area, and Barrett- Joyner-Halenda (BJH) pore-size distribution were used to characterize the morphology, mesoporous structure, and thermal stability of the sample. The results indicate that the sample is pure WC. The WC sample is stable in air at 410 oC and the mesopores of WC were centered at 4 nm and 22 nm. A WC powder microelectrode (WC-PME) was prepared using the prepared WC powders. The activity of WC for the electroreduction of nitrobenzene was studied by cyclic voltammetry (CV). The results indicate that the bimodal porosity of WC-PME led to higher catalytic activity than that of a Pt micro disc electrode (Pt-MDE). The reduction potential was 30 mV more positive than that of the Pt-MDE. The relation Ip-v1/2 showed that the electrode reaction was controlled by liquid diffusion.

  • 加载中
    1. [1]

      1. Levy, R. B.; Boudart, M. Science, 1973, 181: 547

    2. [2]

      2. B?hm, H. Nature, 1970, 227: 484

    3. [3]

      3. Ma, C. A.; Brandon, N.; Li, G. H. J. Phys. Chem. C, 2007, 111: 9504

    4. [4]

      4. Ma, C. A.; Huang, Y.; Tong, S. P.; Zhang, W. M. Acta Phys. - Chim. Sin., 2005, 21: 721 [马淳安,黄烨,童少平, 张维民. 物理化学学报, 2005, 21: 721]

    5. [5]

      5. Kojima, I.; Miyazaki, E.; Inoue, Y.; Yasumori, I. J. Catal., 1979, 59: 472

    6. [6]

      6. Horányi, G.; Rizmayer, E. M. React. Kinet. Catol. Lett., 1980, 12: 21

    7. [7]

      7. Hara, Y.; Minami, N.; Matsumoto, H.; Itagaki, H. Appl. Catal. A- Gen., 2007, 332: 289

    8. [8]

      8. Vidick, B.; Lemaiter, J.; Leclercq, L. J. Catal., 1986, 99: 439

    9. [9]

      9. York, A. P. E.; Claridge, J. B.;Williams, V. C.; Brungs, A. J.; Sloan, J.; Hanif, A.; Al-Megren, H.; Green, M. L. H. Stud. Surf. Sci. Catal. B, 2000, 103: 989

    10. [10]

      10. Oyama, S. T.; Delporte, P.; Ham-Huu, C. P.; Ledoux, M. J. Chem. Lett., 1997: 949

    11. [11]

      11. Choi, S.; Thompson, L. T. Mater. Res. Soc. Symp. Proc., 1997, 454: 41

    12. [12]

      12. Moreno-Castilla, C.; Alvarez-Merino, M. A.; Carrasxo-Martin, F.; Fierro, J. L. G. Langmuir, 2001, 17: 1752

    13. [13]

      13. Ribeiro, F. H.; Boucart, M.; Dalla, B.; Ralph, A.; Iglesia, E. J. Catal., 1991, 130: 498

    14. [14]

      14. Yu, F.W.; Liu, H. Z.; Ji, J. B. Chem. Engin. Times, 2003, 17: 45 [于风文,刘化章, 计建炳. 化工时刊, 2003, 17: 45]

    15. [15]

      15. Yao, Y. C.; Dai, Y. N.; Ren, H. L. Battery Bimonthly, 2004, 34: 250 [姚耀春,戴永年,任海伦. 电池, 2004, 34: 250]

    16. [16]

      16. Cachet-Vicier, C.; Vicier, V.; Cha, C. S. Electrochim. Acta, 2001, 47: 181

    17. [17]

      17. Sato, S.; Takahashi, R.; Sodesawa, T.; Koubata, M. Appl. Catal. A- Gen., 2005, 284: 247

    18. [18]

      18. Takahashi, R.; Sato, S.; Sodesawa, T.; Ikeda, T. Phys. Chem. Chem. Phys., 2003, 5: 2476

    19. [19]

      19. Caruso, R. A.; Antonietti, M. Adv. Funct. Mater., 2002, 12: 307


  • 加载中
    1. [1]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    5. [5]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    6. [6]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    11. [11]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    12. [12]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    13. [13]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    14. [14]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    15. [15]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    16. [16]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

Metrics
  • PDF Downloads(1212)
  • Abstract views(2594)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return