Citation: LI Wen-Zhang, LI Jie, WANG Xuan, ZHANG Shu-Juan, CHEN Qi-Yuan. Photoelectrochemical Properties of Cubic Tungsten Trioxide Films Obtained by the Polymeric Precursor Method[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2343-2348. doi: 10.3866/PKU.WHXB20100904 shu

Photoelectrochemical Properties of Cubic Tungsten Trioxide Films Obtained by the Polymeric Precursor Method

  • Received Date: 9 March 2010
    Available Online: 8 July 2010

    Fund Project: 教育部新世纪优秀人才资助计划(NCET.05.0691) (NCET.05.0691)湖南省重大科技计划项目(2008SK1001)资助 (2008SK1001)

  • WO3 films were prepared using ammonium metatungstate as the precursor and polyethylene glycol 1000 as the structure-directing agent by the polymeric precursor method. The obtained materials were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet-visible (UV-Vis) spectrophotometry. The photoelectrochemical properties of the WO3 film electrodes were studied by cyclic voltammetry, Mott-Schottky, transient photocurrent spectra, and photocurrent-potential curve analysis. Results indicate that the films are crystalline with a cubic structure and they have bandgap energy of 2.7 eV. The flat band potential, donor carrier density, and photocurrent density of the sample calcined at 450 ℃ are 0.06 V, 2.44×1022 cm-3 and 2.70 mA·cm-2 under a 500W Xe lamp (I0=100 mW·cm-2), respectively. The effect of calcination temperature on the photoelectrochemical properties of the WO3 films was investigated and the mechanismof charge separation for its behavior was also discussed.

  • 加载中
    1. [1]

      1. Fujishima, A.; Honda, K. Nature, 1972, 238: 37

    2. [2]

      2. Kato, H.; Kudo, A. J. Phys. Chem. B, 2002, 106: 5029

    3. [3]

      3. Marsen, B.; Miller, E.; Paluselli, D.; Rocheleau, R. Int. J. HydrogenEnergy, 2007, 32: 3110

    4. [4]

      4. Sastri, M.; Nagasubramanian, G. Int. J. Hydrogen Energy, 1982, 7:873

    5. [5]

      5. Benkstein, K. D.; Raman, B.; Lahr, D. L.; Bonevich, J. E.;Semancik, S. Sensors and Actuators B: Chemical, 2009, 137: 48

    6. [6]

      6. Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J.J. Am. Chem. Soc., 2001, 123: 10639

    7. [7]

      7. Szilágyi, I. M.;Wang, L.; uma, P. I.; Balázsi, C.; Madarász, J.;Pokol, G. Mater. Res. Bull., 2009, 44: 505

    8. [8]

      8. Li,W.; Leng, W. H.; Niu, Z. J.; Li, X.; Fei, F.; Zhang, J. Q.; Cao,C. N. Acta Phys. -Chim. Sin., 2009, 25: 2427 [李文,冷文华,牛振江,李想,费会,张鉴清,曹楚南.物理化学学报, 2009,25: 2427]

    9. [9]

      9. Zheng, H. J.; Wang, X. D.; Gu, Z. H. Acta Phys. -Chim. Sin., 2009,25: 1650 [郑华均, 王醒东,顾正海.物理化学学报, 2009, 25:1650]

    10. [10]

      10. Lee, K.; Seo, W.; Park, J. J. Am. Chem. Soc., 2003, 125: 3408

    11. [11]

      11. Li, X.; Liu, J.; Li, Y. Inorg. Chem., 2003, 42: 921

    12. [12]

      12. Yamaguchi, O.; Tomihisa, D.; Kawabata, H.; Shimizu, K. J. Am.Ceram. Soc., 1987, 70: 94

    13. [13]

      13. Balázsi, C.; Farkas-Jahnke, M.; Kotsis, I.; Petrás, L.; Pfeifer, J.Solid State Ionics, 2001, 141-142: 411

    14. [14]

      14. Nishide, T.; Mizukami, F. Thin Solid Films, 1995, 259: 212

    15. [15]

      15. Al Mohammad, A.; Gillet, M. Thin Solid Films, 2002, 408: 302

    16. [16]

      16. Ramana, C.; Utsunomiya, S.; Ewing, R.; Julien, C.; Becker, U.J. Phys. Chem. B, 2006, 110: 10430

    17. [17]

      17. Vogt, T.; Woodward, P. M.; Hunter, B. A. J. Solid State Chem.,1999, 144: 209

    18. [18]

      18. Kominami, H.; Yabutani, K.; Yamamoto, T.; Kera, Y.; Ohtani, B.J. Mater. Chem., 2001, 11: 3222

    19. [19]

      19. Su, L.; Zhang, L.; Fang, J.; Xu, M.; Lu, Z. Sol. Energ. Mat. Sol. C,1999, 58: 133

    20. [20]

      20. Sivakumar, R.; Raj, A. M. E.; Subramanian, B.; Jayachandran, M.;Trivedi, D.; Sanjeeviraja, C. Mater. Res. Bull., 2004, 39: 1479

    21. [21]

      21. Cheng, X.; Leng, W.; Liu, D.; Zhang, J.; Cao, C. Chemosphere,2007, 68: 1976

    22. [22]

      22. Cheng, X.; Leng, W.; Liu, D.; Xu, Y.; Zhang, J.; Cao, C. J. Phys.Chem. C, 2008, 112: 8725

    23. [23]

      23. Yagi, M.; Maruyama, S.; Sone, K.; Nagai, K.; Norimatsu, T.J. Solid State Chem., 2008, 181: 175

    24. [24]

      24. ndal, M.; Hameed, A.; Yamani, Z.; Suwaiyan, A. Chem. Phys.Lett., 2004, 385: 111

    25. [25]

      25. Kominami, H.; Kato, J.; Murakami, S.; Ishii, Y.; Kohno, M.;Yabutani, K.; Yamamoto, T.; Kera, Y.; Inoue, M.; Inui, T. Catal.Today, 2003, 84: 181

    26. [26]

      26. Butler, M. J. Appl. Phys., 1977, 48: 1914

    27. [27]

      27. Santato, C.; Ulmann, M.; Augustynski, J. Adv. Mater., 2001, 13:511


  • 加载中
    1. [1]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    2. [2]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    3. [3]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Wencheng FangDong LiuYing ZhangHao FengQiang Li . Improved Photoelectrochemical Performance by Polyoxometalate-Modified CuBi2O4/Mg-CuBi2O4 Homojunction Photocathode. Acta Physico-Chimica Sinica, 2024, 40(2): 2304006-0. doi: 10.3866/PKU.WHXB202304006

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    8. [8]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    9. [9]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    10. [10]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    11. [11]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    12. [12]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    15. [15]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    16. [16]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    17. [17]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    18. [18]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    19. [19]

      Wenjie Jiang Zhixiang Zhai Xiaoyan Zhuo Jia Wu Boyao Feng Tianqi Yu Huan Wen Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519

    20. [20]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(1690)
  • Abstract views(2959)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return