Citation: ZHOU Yan-Li, ZHI Jin-Fang, ZHANG Xiang-Fei, XU Mao-Tian. Comparative Study of Electrochemical Performances of Three Carbon-Based ElectrodeMaterials[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2405-2409. doi: 10.3866/PKU.WHXB20100841 shu

Comparative Study of Electrochemical Performances of Three Carbon-Based ElectrodeMaterials

  • Received Date: 18 April 2010
    Available Online: 2 July 2010

    Fund Project: 国家自然科学基金(20775047) (20775047)河南省科技厅国际合作项目基金(084300510075) (084300510075)商丘师范学院青年基金(009QN08)资助 (009QN08)

  • The electrochemical properties of three carbon-based electrodes including boron-doped nanocrystalline diamond (BDND), boron-doped microcrystalline diamond (BDMD), and glassy carbon (GC) were compared. We used scanning electron microscopy to characterize the two diamond electrodes and the grain sizes of the BDMD and BDND films were 1-5 μm and 20-100 nm, respectively. The phase composition was characterized by Raman spectroscopy and high-quality BDMD and BDND films were formed by hot-filament chemical vapor deposition. Cyclic votammograms for 0.5 mol·L-1 H2SO4 showed that the potential windows for the BDND and BDMD electrodes were 3.3 and 3.0 V, respectively. The potential windows were much wider than that of the GC electrode (2.5 V). The cyclic voltammograms and Nyquist plots of the impedance measurements for [Fe(CN)6]3-/[Fe(CN)6]4- show peak to peak separations (ΔEp) of 73, 92, and 112 mV and electron transfer resistances (Ret) of (98依5), (260依19), and (400依25) Ωfor the BDND, BDMD, and GC electrodes, respectively. We also investigated the oxidation of 0.1 mmol·L-1 bisphenol A (BPA) on the three carbon-based electrodes. The above-mentioned electrochemical results reveal that the two diamond electrodes have wider potential windows, better reversibility, faster electron transfer, and higher stability than the GC electrode. Additionally, the BDND electrode shows better electrochemical properties than the BDMD electrode.

  • 加载中
    1. [1]

      1. McCreery, R. L. Chem. Rev., 2008, 108: 2646

    2. [2]

      2. Wang, Y. R.; Hu, P.; Liang, Q. L.; Luo, G. A.; Wang, Y. M. Chin. J. Anal. Chem., 2008, 36: 1011 [王月荣,胡坪, 梁琼麟, 罗国安,王义明. 分析化学, 2008, 36: 1011]

    3. [3]

      3. Chen, P. H.; Fryling, M. A.; McCreery, R. L. Anal. Chem., 1995, 67: 3115

    4. [4]

      4. Wang, J.; Musameh, M.; Mo, J. W. Anal. Chem., 2006, 78: 7044

    5. [5]

      5. Hermans, A.; Seipel, A. T.; Miller, C. E.; Wightman, R. M. Langmuir, 2006, 22: 1964

    6. [6]

      6. L俟, Y. F.; Yin, Y. J.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin., 2007, 23: 5 [吕亚芬, 印亚静,吴萍,蔡称心.物理化学学报, 2007, 23: 5]

    7. [7]

      7. Zhang, B.; Adams, K. L.; Luber, S. J.; Eves, D. J.; Heien, M.; Ewing, A. G. Anal. Chem., 2008, 80: 1394

    8. [8]

      8. Zhi, J. F.; Tian, R. H. Prog. Chem., 2005, 17: 55 [只金芳, 田如海.化学进展, 2005, 17: 55]

    9. [9]

      9. Granger, M. C.; Witek, M.; Xu, J.;Wang, J.; Hupert, M.; Hanks, A.; Koppang, M. D.; Butler, J. E.; Lucazeau, G.; Mermoux, M.; Strojek, J. W.; Swain, G. M. Anal. Chem., 2000, 72: 3793

    10. [10]

      10. Tatsuma, T.; Mori, H.; Fujishima, A. Anal. Chem., 2000, 72: 2919

    11. [11]

      11. Compton, R. G.; Foord, J. S.; Marken, F. Electroanalysis, 2003, 15: 1349

    12. [12]

      12. Swain, G. M.; Ramesham, R. Anal. Chem., 1993, 65: 345

    13. [13]

      13. Zhou, Y. L.; Zhi, J. F.; Zou, Y. S.; Zhang,W. J.; Lee, S. T. Anal. Chem., 2008, 80: 4141

    14. [14]

      14. Wilson, N. R.; Clewes, S. L.; Newton, M. E.; Unwin, P. R.; MacPherson, J. V. J. Phys. Chem. B, 2006, 110: 5639

    15. [15]

      15. Barnard, A. S.; Sternberg, M. J. Phys. Chem. B, 2006, 110: 19307

    16. [16]

      16. Zhang, Y.; Yoshihara, S.; Shirakashi, T.; Kyomen, T. Diamond Relat. Mater., 2005, 14: 213

    17. [17]

      17. Fischer, A. E.; Show, Y.; Swain, G. M. Anal. Chem., 2004, 76: 2553

    18. [18]

      18. Duo, I.; Fujishima, A.; Comninellis, C. Electrochem. Commun., 2003, 5: 695

    19. [19]

      19. Bennett, J. A.;Wang, J.; Show, Y.; Swain, G. M. J. Electrochem. Soc., 2004, 151: E306

    20. [20]

      20. Show, Y.; Witek, M. A.; Sonthalia, P.; Swain, G. M. Chem. Mater., 2003, 15: 879

    21. [21]

      21. Prawer, S.; Nugent, K. W.; Jamieson, D. N.; Orwa, J. O.; Bursill, L. A.; Peng, J. L. Chem. Phys. Lett., 2000, 332: 93

    22. [22]

      22. Chen, Q.; Gruen, D. M.; Krauss, A. R.; Corrigan, T. D.;Witek, M.; Swain, G. M. J. Electrochem. Soc., 2001, 148: E44

    23. [23]

      23. Niwa, O.; Jia, J.; Sato, Y.; Kato, D.; Kurita, R.; Maruyama, K.; Suzuki, K.; Hirono, S. J. Am. Chem. Soc., 2006, 128: 7144

    24. [24]

      24. Jia, J.; Kato, D.; Kurita, R.; Sato, Y.; Maruyama, K.; Suzuki, K.; Hirono, S.; Ando, T.; Niwa, O. Anal. Chem., 2007, 79: 98

    25. [25]

      25. Yin, H.; Zhou, Y.; Ai, S. J. Electroanal. Chem., 2009, 626: 80

    26. [26]

      26. D'Antuono, A.; Dall'Orto, V. C.; Lo Balbo, A.; Sobral, S.; Rezzano, I. J. Agric. Food Chem., 2001, 49: 1098


  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    4. [4]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    5. [5]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    6. [6]

      Xiaonan LIHui HANYihan ZHANGJing XIONGTingting GUOJuanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376

    7. [7]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    8. [8]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    9. [9]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    10. [10]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    15. [15]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    16. [16]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    19. [19]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    20. [20]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

Metrics
  • PDF Downloads(1384)
  • Abstract views(3261)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return