Citation:
YAN Liang-Liang, JIANG Qing-Ning, LIU De-Yu, ZHONG Yan, WEN Fei-Peng, DENG Xiao-Cong, ZHONG Qi-Ling, REN Bin, TIAN Zhong-Qun. Electrocatalytic Oxidation of Formic Acid on Pt-Se HollowNanosphere Modified Glassy Carbon Electrodes[J]. Acta Physico-Chimica Sinica,
;2010, 26(09): 2337-2342.
doi:
10.3866/PKU.WHXB20100835
-
Platinum-selenium and platinum hollow nanospheres (denoted as (Pt-Se)HN and PtHN, respectively) with different coverages of Se (θSe) (θSe=0.49, 0.39, 0.06, 0) were prepared using amorphous Se colloids as a sacrificial template. Sulfite was used to completely remove Se from the core-shell nanoparticles. The morphology and structure of the nanoparticles were characterized using various methods, which revealed a hollow structure with a very uniform size distribution and a porous structure on the shell. Assembly of Pt-Se hollownanospheres ((Pt-Se)HN) on a glassy carbon (GC) electrode produced a (Pt-Se)HN/GC electrode. The electrocatalytic activity of the electrode for the oxidation of formic acid was compared with the PtHN/GCand commercial Pt/C/GCelectrodes by cyclic voltammetry and chronoamperometry. The activity followed the order: (Pt-Se)HN/GC > PtHN/GC >Pt/C/GC. The electrooxidation of formic acid on (Pt-Se)HN/C, PtHN/C, and Pt/C catalysts follows different mechanisms: the former tends to directly oxidize formic acid to CO2 via weakly adsorbed intermediates, and the latter two via both weakly and strongly adsorbed intermediates. (Pt-Se)HN with a suitable seleniumcontent showed optimal electrocatalytic activity for the oxidation of formic acid.
-
-
-
[1]
1. Mao, Z. Q. Fuel cell. Beijing: Chemical Industry Press, 2005: 1-31[毛宗强.燃料电池. 北京:化学工业出版社, 2005: 1-31]
-
[2]
2. Yi, B. L. Fuel cell: foundmental, technology, application. Beijing:Chemical Industry Press, 2003: 1-7 [衣宝廉. 燃料电池:原理·技术·应用. 北京:化学工业出版社, 2003: 1-7]
-
[3]
3. Lu, T. H. High-Technology and Industrialization, 2008, 11: 70[陆天虹.高技术与工业, 2008, 11: 70]
-
[4]
4. Hong, P.; Liao, S. J. Modern Chemical Industry, 2009, 8: 15[洪平, 廖世军.现代化工, 2009, 8: 15]
-
[5]
5. Ha, S.; Dunbar, Z.; Masel, R. I. J. Power Sources, 2006, 158: 129
-
[6]
6. Yang, G. X.; Chen, T. T.; Tang, Y.W.; Lu, T. H. Acta Phys. -Chim.Sin., 2009, 25(12): 2450 [杨改秀,陈婷婷,唐亚文,陆天虹.物理化学学报, 2009, 25(12): 2450]
-
[7]
7. Yu, X. W.; Pickup, P. G. J. Power Sources, 2008, 182: 124
-
[8]
8. Zhang, S. S.; Yuan, X. Z.; Hin, J. N. C.; Wang, H. J.; Friedrich, K.A.; Schulze, M. J. Power Sources, 2009, 194: 588
-
[9]
9. Motoo, S. Proceedings of the Symposium chemistry and physics ofelectrocatalysis. McIntyre, J. D. E.;Weaver, M. J.; Yeager, E. B. Eds.San Francisco, 1983, Princeton, NJ: The Electrochemical Society,1984: 331
-
[10]
10. Rice, C.; Ha, S.; Masel, R. I.;Waszczuk, P.; Wieckowski, A.;Barnard, T. J. Power Sources, 2002, 111: 83
-
[11]
11. Rice, C.; Ha, S.; Masel, R. I.;Wieckowski, A. J. Power Sources,2003, 115: 229
-
[12]
12. Uhm, S.; Lee, H. J.; Kwon, Y.; Lee, J. Angew. Chem. Int. Edit.,2008, 47: 10163
-
[13]
13. Angerstein-Kozlowska, H.; MacDougall, B.; Conway, B. E.J. Electrochem. Soc., 1973, 120: 756
-
[14]
14. Adzic, R. R.; Simic, D. N.; Despic, A. R.; Drazic, D. M.J. Electroanal. Chem., 1975, 65: 587
-
[15]
15. Zhang, H. X.; Chao, W.; Wang, J. Y.; Zhai, J. J.; Cai, W. B.J. Phys. Chem. C, 2010, 114: 6446
-
[16]
16. Llorca, M. J.; Herrero, E.; Feliu, J. M.; Aldaz, A. J. Electroanal.Chem., 1994, 373: 217
-
[17]
17. Shibata, M.; Motoo, S. J. Electroanal. Chem., 1987, 229: 385
-
[18]
18. Shibata, M.; Takahashi, O.; Motoo, S. J. Electroanal. Chem., 1988,249: 253
-
[19]
19. Xia, X. H.; Iwasita, T. J. Electrochem. Soc., 1993, 140: 2559
-
[20]
20. Chizhikov, D. M.; Shchastlivyi, V. P. Seleniumand selenides(translated fromthe Russion by Elkin, E. M.). London andWellingborough: Collet忆s LTD, 1968: 40
-
[21]
21. Wang, R. F.; Liao, S. J.; Liu, H. Y.; Meng, H. J. Power Sources,2007, 171: 471
-
[22]
22. Trasatti, S.; Petrii, O. A. Pure Appl. Chem., 1991, 63: 711
-
[23]
23. Wu, Y. N.; Liao, S. J. Acta Phys. -Chim. Sin., 2010, 26(3): 669[吴燕妮,廖世军.物理化学学报, 2010, 26(3): 669]
-
[24]
24. Leiva, E.; Iwasita, T.; Herrero, E.; Feliu, J. M. Langmuir, 1997,13: 6287
-
[25]
25. Samjeské, G.; Osawa, M. Angew. Chem. Int. Edit., 2005, 44: 5694
-
[26]
26. Park, I. S.; Lee, K. S.; Choi, J. H.; Park, H. Y.; Sung, Y. E. J. Phys.Chem. C, 2007, 111: 19126
-
[27]
27. Park, S.; Xie, Y.; Weaver, M. J. Langmuir, 2002, 18: 5792
-
[28]
28. Kristian, N.; Yan, Y.; Wang, X. Chem. Commun., 2008: 353
-
[1]
-
-
-
[1]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[2]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[3]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[4]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[5]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[6]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[7]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[8]
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
-
[9]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[10]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[11]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[12]
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
-
[13]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[14]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[15]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[16]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[17]
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
-
[18]
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
-
[19]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[20]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[1]
Metrics
- PDF Downloads(1392)
- Abstract views(4922)
- HTML views(11)