Citation: NING Hua, TAO Xiang-Ming, WANG Mang-Mang, CAI Jian-Qiu, TAN Ming-Qiu. Density Functional Theory Study on Hydrogen Adsorption on Be(0001) Surface[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2267-2273. doi: 10.3866/PKU.WHXB20100828 shu

Density Functional Theory Study on Hydrogen Adsorption on Be(0001) Surface

  • Received Date: 14 January 2010
    Available Online: 28 June 2010

    Fund Project: 浙江省教育厅科研项目(Y200804278) (Y200804278)长江学者和创新团队发展计划(IRT0754)资助 (IRT0754)

  • We report on density functional theory (DFT) total-energy calculations within the generalized gradient approximation for the adsorption of hydrogen onto Be(0001) surface. To investigate the atomic geometries and stability with different hydrogen coverages for this system, we changed the atomic hydrogen coverage from 0.06 to 1.33 monolayer (ML) using various surface supercell geometries. The calculations showed that the adsorption sites have a strong dependence on hydrogen coverage. The adsorbates mainly occupied fcc and hcp hollow sites below 0.67 ML. At 0.78 ML the hydrogen atoms were adsorbed on hollow and bridge sites while for the higher coverage range (ca 0.89-1.00 ML) the hydrogen atoms were adsorbed onto the tilted bridge sites, i.e., a bridge site with a small deviation towards the hollow position. From 1.11 to 1.33 ML, the adsorbed hydrogen atoms were located at hcp and bridge sites, and some Be surface atoms were expanded. All these adsorption configurations were found to be energetically favorable with a H2 reference point fixed on H2 molecule. Further total-energy calculations based on a p(3×3) geometry did not revealed any stable or energetically favorable adsorption geometry versus the H2 molecule beyond a hydrogen coverage of 1.33 ML.

  • 加载中
    1. [1]

      [1]. Biswas, R.; Hamann, D. R. Phys. Rev. Lett., 1986, 56: 2291

    2. [2]

      [2]. Mattsson, T. R.; Wahnstrom, G.; Bengtsson, L.; Hammer, B. Phys. Rev. B, 1997, 56: 2258

    3. [3]

      [3]. Bhatia, B.; Sholl, D. S. J. Chem. Phys., 2005, 122: 204707

    4. [4]

      [4]. Ledentu, V.; Dong, W.; Sautet, P.; Kresse, G.; Hafner, J. Phys. Rev. B, 1998, 57: 12482

    5. [5]

      [5]. Dong, W.; Kresse, G.; Furthmüller, J.; Hafner, J. Phys. Rev. B, 1996, 54: 2157

    6. [6]

      [6]. Chou, M. Y.; Chelikowsky, J. R. Phys. Rev. B, 1987, 59: 1737

    7. [7]

      [7]. Abramov, E.; Riehm, M. P.; Thompson, D. A.; Smelter, W. W. J. Nucl. Mater., 1990, 175: 9

    8. [8]

      [8]. Vajeeson, P.; Ravindran, P.; Kjekshus, A.; Fjellvag, H. Appl. Phys. Lett., 2004, 84: 34

    9. [9]

      [9]. Marino, M. M.; Ermler, W. C.; Tompa, G. S.; Seidl, M. Surf. Sci., 1989, 208: 189

    10. [10]

      [10]. Ray, K. B.; Hannon, J. B.; Plummer, E. W. Chem. Phys. Lett., 1990, 171: 469

    11. [11]

      [11]. Doerner, R. P. J. Nucl. Mater., 2007, 363: 32

    12. [12]

      [12]. Reinelt, M.; Linsmeier, C. Phys. Scr., 2007, 128: 111

    13. [13]

      [13]. Yu, R.; Lam, P. K. Phys. Rev. B, 1989, 39: 5035

    14. [14]

      [14]. Hedin, L.; Lundqvist, B. I. J. Phys. C, 1971, 4: 2064

    15. [15]

      [15]. Marino, M. M.; Ermler, W. C. J. Chem. Phys., 1991, 94: 8021

    16. [16]

      [16]. Stumpf, R.; Feibelman, P. J. Phys. Rev. B, 1995, 51: 13748

    17. [17]

      [17]. Feibelman, P. J. Phys. Rev. B, 1993, 48: 11270

    18. [18]

      [18]. Stumpf, R. Phys. Rev. B, 1996, 53: 4253

    19. [19]

      [19]. Allouche, A. Phys. Rev. B, 2008, 78: 085429

    20. [20]

      [20]. Kresse, G.; Furthermüller, J. Comput. Mater. Sci., 1996, 6:15

    21. [21]

      [21]. Kresse, G.; Furthermüller, J. Phys. Rev. B, 1996, 55: 11169

    22. [22]

      [22]. Vanderbilt, D. Phys. Rev. B, 1990, 41: 7892

    23. [23]

      [23]. Bl?觟chl, P. E. Phys. Rev. B, 1994, 50: 17953

    24. [24]

      [24]. Perdew, J. P.; Burke, K.; Ernzerhorf, M. Phys. Rev. Lett., 1996, 77: 3865

    25. [25]

      [25]. Perdew, J. P.; Burke, K.; Ernzerhorf, M. Phys. Rev. Lett., 1997, 78: 1396

    26. [26]

      [26]. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B, 1976, 13: 5188

    27. [27]

      [27]. Payne, M. C.; Teter, M. O.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys., 1992, 64: 1045

    28. [28]

      [28]. Davis, H.; Hannon, J.; Ray, K.; Plummer, E. W. Phys. Rev. Lett., 1992, 68: 2632

    29. [29]

      [29]. Feibelman, P. J. Phys. Rev. B, 1992, 46: 2532

    30. [30]

      [30]. Antonelli, A.; Khanana, S. N.; Jena, P. Surf. Sci., 1993, 289: L614

    31. [31]

      [31]. Pohl, K.; Cho, J. H.; Terakura, K.; Scheffler, M.; Plummer, E. W. Phys. Rev. Lett., 1998, 80: 2853

    32. [32]

      [32]. Holzwarth, N. A. W.; Zeng, Y. Phys. Rev. B, 1995, 51: 13653

    33. [33]

      [33]. Song, H. Z.; Zhang, P.; Zhao, X. G. Acta Phys. Sin., 2007, 56(1):465. [宋红州, 张 平, 赵宪庚. 物理学报, 2007, 56(1): 465]

    34. [34]

      [34]. Bernath, P. F.; Shayesteh, A.; Tereszchuk, K.; Colin, R. Science, 2002, 297:132


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    10. [10]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    11. [11]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    12. [12]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    19. [19]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    20. [20]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

Metrics
  • PDF Downloads(1188)
  • Abstract views(3519)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return