Citation: GUO Xia, LI Hua, GUO Rong. Coexistence of Oli nucleotide/Single-Chained Cationic Surfactant Vesicles with Precipitates[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2195-2199. doi: 10.3866/PKU.WHXB20100826 shu

Coexistence of Oli nucleotide/Single-Chained Cationic Surfactant Vesicles with Precipitates

  • Received Date: 1 March 2010
    Available Online: 25 June 2010

    Fund Project: 国家自然科学基金(20603031)资助项目 (20603031)

  • It is well known that DNA (including oli nucleotide) and cationic surfactant can form insoluble complex. In this study, by turbidity measurement and TEM image, we found that the single-chained cationic surfactant could transform the oli nucleotide/single-chained cationic surfactant precipitates into vesicles and the vesicles coexist with the insoluble complex. The hydrophobic interaction between the cationic surfactant and the precipitates plays a key role in vesicle formation. Moreover, when the temperature reaches a specific value where the oli nucleotide begins to melt, the oli nucleotide/single-chained cationic surfactant vesicles form far easier. Thus, the more extended the oli nucleotide, the much easier for vesicle formation. As far as we know, the study about the oli nucleotide/cationic surfactant vesicle formation is very limited. Therefore, considering the growing importance and significance of DNA (including oli nucleotide)/amphiphile systems in medicine, biology, pharmaceutics, and chemistry, this study should provide some helpful information in further understanding these systems.

  • 加载中
    1. [1]

      [1]. Fendler, J. H. Membrane mimetic chemistry. New York: Wiley, 1982: 110-125

    2. [2]

      [2]. Holowka, E. P.; Pochan, D. J.; Deming, T. J. J. Am. Chem. Soc., 2005, 127: 12423

    3. [3]

      [3]. Tomasic, V.; Tomasic, A.; cmit, I.; Filipovic-Vincekovic, N. J. Colloid Interface Sci., 2005, 285: 342

    4. [4]

      [4]. Wang, Y.; Guo, X.; Guo, R. J. Colloid Interface Sci., 2008, 317: 568

    5. [5]

      [5]. de Lima, M. C. P.; Simoes, S.; Pires, P.; Faneca, H.; Duzgunes, N. Adv. Drug Delivery Rev., 2001, 47: 277

    6. [6]

      [6]. Pontius, B. W.; Berg, P. Proc. Natl. Acad. Sci. U. S. A., 1991, 88: 8237

    7. [7]

      [7]. Geck, P.; Nasz, I. Anal. Biochem., 1983, 135: 264

    8. [8]

      [8]. Allers, T.; Lichten, M. Nucleic Acids Research, 2000, 28: e6

    9. [9]

      [9]. McLoughlin, D. M.; O'Brien, J.; Canus, J. J.; relov, A. V.; Dawson, K. A. Bioseparation, 2000, 9: 307

    10. [10]

      [10]. Lander, R. J.; Winters, M. A.; Meacle, F. J.; Buckland, B. C.; Lee, A. L. Biotechnol. Bioeng., 2002, 79: 776

    11. [11]

      [11]. Bell, P. C.; Bergsma, M.; Dolbnya, I. P.; Brass, W.; Stuart, M. C. A.; Rowan, A. E.; Feiters, M. C.; Engberts, J. B. F. N. J. Am. Chem. Soc., 2003, 125: 1551

    12. [12]

      [12]. Vijayanathan, V.; Thoma, T.; Thomas, T. J. Biochemistry, 2002, 41: 14085

    13. [13]

      [13]. Mel′nikov, S. M.; Sergeyev, V. G.; Yoshikawa, K. J. Am. Chem. Soc., 1995, 117: 2401

    14. [14]

      [14]. Zhu, D. M.; Evans, R. K. Langmuir, 2006, 22: 3735

    15. [15]

      [15]. Clamme, J. P.; Bernacchi, S.; Vuilleumier, C.; Duportail, G.; Mely, Y. Biochimica et Biophysica Acta, 2000, 1467: 347

    16. [16]

      [16]. Mel′nikov, S. M.; Sergeyev, V. G.; Yoshikawa, K.; Takahashi, H.; Hatta, I. J. Chem. Phys., 1997, 107: 6917

    17. [17]

      [17]. Sergeyev, V. G.; Mikhailenko, S. V.; Pyshkina, O. A.; Yaminsky, I. V.; Yoshikawa, K. J. Am. Chem. Soc., 1999, 121: 1780

    18. [18]

      [18]. Ghirlando, R.; Wachtel, E. J.; Arad, T.; Minsky, A. Biochemistry, 1992, 31: 7110

    19. [19]

      [19]. Zhou, S.; Liang, D.; Burger, C.; Yeh, F.; Chu, B. Biomacromolecules, 2004, 5: 1256

    20. [20]

      [20]. Krishnaswamy, R.; Mitra, P.; Raghunathan, V. A.; Sood, A. K. Europhys. Lett., 2003, 62: 357

    21. [21]

      [21]. Hsu, W. L.; Chen, H. L.; Liou, W.; Lin, H. K.; Liu, W. L. Langmuir, 2005, 21: 9426

    22. [22]

      [22]. Karlsson, L.; van Eijk, M. C. P.; Soderman, O. J. Colloid Interface Sci., 2002, 252: 290

    23. [23]

      [23]. Pizzey, C. L.; Jewell, C. M.; Hays, M. E.; Lynn, D. M.; Abbott, C. L. J. Phys. Chem. B, 2008, 112: 5849

    24. [24]

      [24]. Guo, X.; Li, H.; Zhang, F. M.; Zheng, S. Y.; Guo, R. J. Colloid Interface Sci., 2008, 324: 185

    25. [25]

      [25]. Guo, X.; Cui, B.; Li, H.; ng, Z.; Guo, R. J. Polym. Sci. A, 2009, 47: 434

    26. [26]

      [26]. Spink, C. H.; Chaires, J. B. J. Am. Chem. Soc., 1997, 119: 10920

    27. [27]

      [27]. Zhang, Z.; Huang, W.; Tang, J.; Wang, E.; Dong, S. Biophys. Chem., 2002, 97: 7

    28. [28]

      [28]. Marck, C.; Thiele, D. Nucleic Acids Research, 1978, 5: 1017

    29. [29]

      [29]. Ivanov, V. I.; Minchenkova, L. E.; Schyolkina, A. K.; Poletayev, A. I. Biopolymers, 1973, 12: 89

    30. [30]

      [30]. Dias, R. S.; Magno, L. M.; Valente, A. J. M.; Das, D.; Prasanta, K.; Maiti, S.; Miguel, M. G.; Lindman, B. J. Phys. Chem. B, 2008, 112: 14446

    31. [31]

      [31]. Hayakawa, K.; Santerre, J. P.; Kwak, J. C. T. Biophys. Chem., 1983, 17: 175


  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    5. [5]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    6. [6]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    7. [7]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    11. [11]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    12. [12]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    13. [13]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    14. [14]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    15. [15]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    18. [18]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    19. [19]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    20. [20]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(1047)
  • Abstract views(2925)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return