Citation:
ZOU Yan, WANG Jia, ZHENG Ying-Ying. Electrochemical Corrosion Behaviors of Rusted Carbon Steel[J]. Acta Physico-Chimica Sinica,
;2010, 26(09): 2361-2368.
doi:
10.3866/PKU.WHXB20100825
-
Electrochemical methods including polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) were used to characterize and investigate the electrochemical behavior of rusted carbon steel immersed in seawater. Results indicate that the inner rust layer that forms on the surface of the carbon steel after long-term immersion greatly affects the electrode process. Polarization resistance (Rp), determined by LPR and EIS, increases during the initial immersion period. After long-term immersion, it decreases. Rp initially increases and then decreases gradually with immersion time. The electrochemical characteristics of the rusted carbon steel were studied by removing the outer and inner rust layers. The materials were analyzed by Fourier transform infrared (FTIR) spectroscopy and their cross-sectional morphologies were obtained to determine the cause. The results show that the β-FeOOH, which exists in the inner rust layer, has high electrochemical activity. Its content increases with the growth of the inner rust layer. In the electrochemical tests, even a small amount of polarization allows β-FeOOH to participate in the cathodic reduction reaction. Besides the anodic dissolution of iron and the cathodic reduction of oxygen, rust reduction is also possible. For this reason, the cathodic reaction rate is promoted and Rp decreases.
-
-
-
[1]
1. Hou, B. R. Oceanologia et Limnologia Sinica, 1995, 26(5): 514 [侯保荣.海洋与湖沼, 1995, 26(5): 514]
-
[2]
2. Bousselmi, L.; Fiaud, C.; Tribollets, B.; Triki, E. Corrosion Sci., 1997, 39(9): 1711
-
[3]
3. Duan, J. Z.;Wu, S. R.; Zhang, X. J.; Huang, G. Q.; Du, M.; Hou, B. R. Electrochim. Acta, 2008, 54(1): 22
-
[4]
4. García, K. E.; Morales, A. L.; Barrero, C. A.; Greneche, J. M. Corrosion Sci., 2006, 48(9): 2813
-
[5]
5. Ma, Y. T.; Li, Y.;Wang, F. H. Mater. Chem. Phys., 2008, 112(3): 844
-
[6]
6. Yamashita, M.; Miyuki, H.; Matsuda, Y.; Nagano, H.; Misawa, T. Corrosion Sci., 1994, 36(2): 283
-
[7]
7. Stratmann, M.; Müller, J. Corrosion Sci., 1994, 36(2): 327
-
[8]
8. Stratmann, M.; Bohnenkamp, K.; Engell, H. J. Corrosion Sci., 1983, 23(9): 969
-
[9]
9. Stratmann, M.; HoVmann, K. Corrosion Sci., 1989, 29(11-12): 1329
-
[10]
10. Stratmann, M.; Streckel, H. Corrosion Sci., 1990, 30(6-7): 697
-
[11]
11. Nishimura, T.; Tanaka, I.; Shimizu, Y. Tetsu-to-Hagane, 1995, 81: 1079
-
[12]
12. Andrade, C.; Keddam, M.; Nóvoa, X. R.; Pérez, M. C.; Rangel, C. M.; Takenouti, H. Electrochim. Acta, 2001, 46(24-25): 3905
-
[13]
13. nzález, J. A.; Miranda, J. M.; Otero, E.; Feliu, S. Corrosion Sci., 2007, 49(2): 436
-
[14]
14. Flis, J.; Pickering, H.W.; Osseo-Asare, K. Electrochim. Acta, 1998, 43(12-13): 1921
-
[15]
15. Videm, K. Electrochim. Acta, 2001, 46(24-25): 3895
-
[16]
16. Panda, B.; Balasubramaniam, R.; Dwivedi, G. Corrosion Sci., 2008, 50(6): 1684
-
[17]
17. Bousselmi, L.; Fiaud, C.; Tribollet, B.; Triki, E. Electrochim. Acta, 1999, 44(24): 4357
-
[18]
18. Antony, H.; Perrin, S.; Dillmann, P.; Legrand, L.; Chaussé, A. Electrochim. Acta, 2007, 52(27): 7754
-
[19]
19. Lair, V.; Antony, H.; Legrand, L.; Chaussé, A. Corrosion Sci., 2006, 48(8): 2050
-
[1]
-
-
-
[1]
Yue-Zhou Zhu , Kun Wang , Shi-Sheng Zheng , Hong-Jia Wang , Jin-Chao Dong , Jian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040
-
[2]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[3]
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
-
[4]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[5]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[6]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[7]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[8]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[9]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[10]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[11]
Hong Yan , Wenfeng Wang , Keyin Ye , Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027
-
[12]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[13]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[14]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[15]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[16]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[17]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[18]
Renxiu Zhang , Xin Zhao , Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116
-
[19]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[20]
Yingying Chen , Di Xu , Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057
-
[1]
Metrics
- PDF Downloads(1559)
- Abstract views(2759)
- HTML views(15)