Citation:
JIANG Yong, QIU Rong. Numerical Analysis of the Effect of Carbon Monoxide Addition on Soot Formation in an Acetylene/Air Premixed Flame[J]. Acta Physico-Chimica Sinica,
;2010, 26(08): 2121-2129.
doi:
10.3866/PKU.WHXB20100823
-
The effect of carbon monoxide addition on soot formation in an acetylene/air premixed flame was investigated by detailed numerical simulation. This work focused on both the temperature effect and chemical effect of carbon monoxide addition on soot formation by comparing the results of flames with different CO contents. We find that the addition of carbon monoxide consistently reduces the formation of soot. The soot volume fraction and nucleation rate increase until a threshold temperature is reached and then decrease as the temperature increases. Considering that soot formation took place at the active site by H-abstraction mechanism, the addition of CO promotes the formation of soot. The concentration of H radicals increases and the concentration of OH radicals decreases because of the increased forward rate of the reaction OH+CO=CO2+H. For soot formation to occur by the C-addition mechanism, the degradation rates of C2H2 tends to decrease and this promotes the formation of soot along with CO addition. On the other hand, the addition of CO may greatly reduce the volume fraction of C2H2 in fuel resulting in a lower surface growth rate.
-
Keywords:
-
Soot
, - Acetylene,
- Carbon monoxide,
- Fuel enrichment,
- Modeling
-
-
-
-
[1]
[1]. Yamamoto, M.; Duan, S.; Senkan, S. Combust. Flame, 2007, 151: 532
-
[2]
[2]. Kunioshi, N.; Komori, S.; Fukutani, S. Combust. Flame, 2006, 147: 1
-
[3]
[3]. Joo, H. I.; Gülder, õ. L. Proc. Combust. Inst., 2009, 32: 769
-
[4]
[4]. Kim, Y.; Hatsushika, H.; Muskett, R. R.; Yamazaki, K. Atmos. Environ., 2005, 39: 3513
-
[5]
[5]. Xu, F.; Sunderland, P. B.; Faeth, G. M. Combust. Flame, 1997, 108: 471
-
[6]
[6]. Guo, H.; Smallwood, G. J.; Liu, F.; Ju, Y.; Gülder, õ. L. Proc. Combust. Inst., 2005, 30: 303
-
[7]
[7]. Ren, J. Y.; Qin, W.; E lfopoulos, F. N.; Tsotsis, T. T. Combust. Flame, 2001, 124: 717
-
[8]
[8]. Coppens, F. H. V.; Ruyck, J. D.; Konnov, A. A. Combust. Flame, 2007, 149: 409
-
[9]
[9]. Guo, H.; Smallwood, G. J.; Gülder, õ. L. Proc. Combust. Inst., 2007, 31: 1197
-
[10]
[10]. Wu, C. Y.; Chao, Y. C.; Cheng, T. S.; Chen, C. P.; Ho, C. T. Combust. Flame, 2009, 156: 362
-
[11]
[11]. Gülder, õ. L.; Snelling, D. R.; Sawchuk, R. A. Proc. Combust. Inst., 1996, 26: 2351
-
[12]
[12]. Glassman, I. Proc. Combust. Inst., 1998, 27: 1589
-
[13]
[13]. Guo, H.; Liu, F.; Smallwood, G. J.; Gülder, õ. L. Proc. Combust. Inst., 2002, 29: 2359
-
[14]
[14]. Guo, H.; Liu, F.; Smallwood, G. J.; Gülder, õ. L. Combust. Flame, 2006, 145: 324
-
[15]
[15]. Pandey, P.; Pundir, B. P.; Panigrahi, P. K. Combust. Flame, 2007, 148: 249
-
[16]
[16]. Guo, H.; Thomson, K. A.; Smallwood, G. J. Combust. Flame, 2009, 156: 1135
-
[17]
[17]. Du, D. X.; Axelbaum, R. L.; Law, C. K. Combust. Flame, 1995, 102: 11
-
[18]
[18]. Bhatt, J. S.; Lindstedt, R. P. Proc. Combust. Inst., 2009, 32: 713
-
[19]
[19]. Appel, J.; Bockhorn, H.; Frenklach, M. Combust. Flame, 2000, 121: 122
-
[20]
[20]. Kazakov, A.; Frenklach, M. Combust. Flame, 1998, 114: 484
-
[21]
[21]. Frenklach, M. Chem. Eng. Sci., 2002, 57: 2229
-
[22]
[22]. Lindstedt, R. P.; Louloudi, S. A. Proc. Combust. Inst., 2005, 30: 775
-
[23]
[23]. Zhao, B.; Yang, Z.; Johnston, M. V.; Wang, H.; Wexler, A. S.; Balthasar, M.; Kraft, M. Combust. Flame, 2003, 133: 173
-
[24]
[24]. Smooke, M. D.; McEnally, C. S.; Pfefferle, L. D.; Hall, R. J.; Colket, M. B. Combust. Flame, 1999, 117: 117
-
[25]
[25]. Park, S. H.; Rogak, S. N.; Bushe, W. K.; Wen, J. Z.; Thomson, M. J. Combust. Theor. Model., 2005, 9: 499
-
[26]
[26]. Zhang, Q.; Guo, H.; Liu, F.; Smallwood, G. J.; Thomson, M. J. Proc. Combust. Inst., 2009, 32: 761
-
[27]
[27]. Mueller, M. E.; Blanquart, G.; Pitsch, H. Proc. Combust. Inst., 2009, 32: 785
-
[28]
[28]. Blanquart, G.; Pitsch, H. Combust. Flame, 2009, 156: 1614
-
[29]
[29]. Jiang, Y.; Qiu, R.; Fan, W. C. Journal of Combustion Science and Technology, 2005, 11:218. [蒋 勇, 邱 榕, 范维澄. 燃烧科学与技术, 2005, 11: 218]
-
[30]
[30]. Bowman, C. T.; Hanson, R. K.; Davidson, D. F.; Gardiner, W. C.; Lissianski, V.; Smith, G. P.; lden, D. M.; Frenklach, M.; ldenberg, M. GRI 2.11 detailed mechanism. http://www.me.berkeley.edu/gri_mech/, Berkley CA, USA
-
[31]
[31]. Marinov, N. M.; Pitz, W. J.; Westbrook, C. K.; Vincitore, A. M.; Castaldi, M. J.; Senkan, S. M.; Melius, C. F. Combust. Flame, 1998, 114: 192
-
[32]
[32]. SkjΦth-Rasmussen, M.; Glarborg, P.; Φstberg, M.; Johannessen, J.; Livbjerg, H.; Jensen, A.; Christensen, T. Combust. Flame, 2004, 136: 91
-
[33]
[33]. Koylü, U. õ.; Faeth, G. M.; Farias, T. L.; Carvalho, M. G. Combust. Flame, 1995, 100: 621
-
[34]
[34]. Kee, R. J.; Rupley, F. M.; Miller, J. A. Chemkin-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Report SAND89-8009, Sandia, 1989
-
[35]
[35]. Kee, R. J.; Grcar, J. F.; Smooke, M. D.; Miller, J. A. PREMIX: a Fortran program for modeling steady laminar one-dimensional premixed flames. Report SAND85-8240, Sandia, 1985
-
[36]
[36]. Wang, H.; Frenklach, M. Combust. Flame, 1997, 110: 173
-
[37]
[37]. Wieschnowsky, U.; Bockhorn, H.; Fetting, F. Proc. Combust. Inst., 1989, 22: 343
-
[38]
[38]. Castaldi, M. J.; Senkaw, S. M. Combust. Sci. Technol., 1996, 116: 167
-
[39]
[39]. Tregrossi, A.; Ciajolo, A.; Barbella, R. Combust. Flame, 1999, 117: 553
-
[1]
-
-
-
[1]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[2]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[3]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[4]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[5]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[6]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[7]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[9]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[10]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[11]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[12]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[13]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[14]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[15]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[16]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[17]
Jianfu Zhang , Wei Bai , Juan Hou , Chenyang Zou . Reform and Practice of “Project-Patent- Scholarly Paper” Integrated Teaching Mode: Taking “Polymer Processing” Course as an Example. University Chemistry, 2025, 40(4): 138-146. doi: 10.12461/PKU.DXHX202408138
-
[18]
Zhixin Zhou , Ran Chen , Yuanjian Zhang , Songqin Liu , Yanfei Shen . 分析化学课程本硕一体化的全英文教学改革. University Chemistry, 2025, 40(6): 64-70. doi: 10.12461/PKU.DXHX202407093
-
[19]
Dongyan Tang , Yanqiu Jiang , Su'e Hao , Yunchen Du , Lizhu Zhang , Zhigang Liu . 融合优势资源与聚焦多元培养的非化类大学化学一流课程建设. University Chemistry, 2025, 40(6): 71-76. doi: 10.12461/PKU.DXHX202406062
-
[20]
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
-
[1]
Metrics
- PDF Downloads(1108)
- Abstract views(3177)
- HTML views(26)