Citation:
DUAN Gui-Hua, GAO Hong-Ze, WANG Li-Juan, ZHANG Hou-Yu, MA Yu-Guang. Charge Transport Properties of Anthracene Derivatives[J]. Acta Physico-Chimica Sinica,
;2010, 26(08): 2292-2297.
doi:
10.3866/PKU.WHXB20100813
-
The molecular geometries, electronic structures, reorganization energies, and charge transfer integrals of three anthracene derivatives {2,6-bis[2-(4-pentylphenyl)vinyl]anthracene, DPPVAnt; 2,6-bis-thiophene anthracene, DTAnt; 2,6-bis[2-hexylthiophene]anthracene, DHTAnt} were investigated by density functional theory at the B3LYP/6-31G(d) level. Their mobilities at room temperature were estimated using Einstein relations and compared with the calculated mobility of anthracene. DPPVAnt is a od hole-transporting material with a hole mobility as high as 0.49 cm2·V-1·s-1; DHTAnt is an electron-transporting material with an electron mobility of about 0.12 cm2·V-1·s-1; DTAnt is a bipolar material with its hole and electron mobilities being 0.069 and 0.060 cm2·V-1·s-1, respectively. The calculated mobilities were of the same magnitude as those obtained by experimental measurements. The reorganization energies for the electrons of the three derivatives are almost the same as that for anthracene but the reorganization energies for the holes of the three derivatives are larger than that of anthracene and they follow the order: anthracene
-
-
-
[1]
[1]. Pope, K.; Swenberg, C. E. Electronic processes in organic crystals and polymers. 2nd ed. New York: Oxford University Press, 1999
-
[2]
[2]. Silinsh, E. A.; Capek, V. Organic molecular crystals: interaction, localtion, and transport phenomena. New York: AIP Press, 1994
-
[3]
[3]. Gershenson, M. E.; Podzorov, V.; Morpur , A. F. Rev. Mod. Phys., 2006, 78: 973
-
[4]
[4]. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, V.; Silbey, R.; Bredas, J. L. Chem. Rev., 2007, 107: 926
-
[5]
[5]. Shirota, Y.; Kageyama, H. Chem. Rev., 2007, 107: 953
-
[6]
[6]. Klauk, K.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W. J. Appl. Phys., 2002, 92: 5259
-
[7]
[7]. Meng, H.; Sun, F. P.; ldfinger, M. B.; Jaycox, G. D.; Li, Z. G.; Marshall, W. J.; Blackman, G. S. J. Am. Chem. Soc., 2005, 127: 2406
-
[8]
[8]. Meng, H.; Sun, F. P.; ldfinger, M. B.; Gao, F.; Londono, D. J.; Marshal, W. J.; Blackman, G. S.; Dobbs, K. D.; Keys, D. E. J. Am. Chem. Soc., 2006, 128: 9304
-
[9]
[9]. Deng, W. Q.; ddard III, W. A. J. Phys. Chem. B, 2004, 108: 8614
-
[10]
[10]. Kukhta, A. V.; Kukhta, I. N.; Kukhta, N. A.; Neyra, O. L.; Meza, E. J. Phys. B-At. Mol. Opt. Phys., 2008, 41: 205701
-
[11]
[11]. Yang, X. D.; Wang, L. J.; Wang, C. L.; Long, W.; Shuai, Z. G. Chem. Mater., 2008, 20: 3205
-
[12]
[12]. Wang, C. L.; Wang, F. H.; Yang, X. D.; Li, Q. K.; Shuai, Z. G. Organic Electrons, 2008, 9: 635
-
[13]
[13]. Marcus, R. A. Rev. Mod. Phys., 1993, 65: 599
-
[14]
[14]. Marcus, R. A. J. Chem. Phys., 1965, 43: 679
-
[15]
[15]. Newton, M. D.; Sutin, N. Annu. Rev. Phys. Chem., 1984, 35: 437
-
[16]
[16]. Siders, P.; Marcus, R. A. J. Am. Chem. Soc., 1981, 103: 748
-
[17]
[17]. Brunschwig, B. S.; Logan, J.; Newton, M. D.; Sutin, N. J. Am. Chem. Soc., 1980, 102: 5798
-
[18]
[18]. Vilfan, I. Physica Status Solidi B-Basic Research, 1973, 59: 351
-
[19]
[19]. Norton, J. E.; Bredas, J. L. J. Am. Chem. Soc., 2008, 130: 12377
-
[20]
[20]. Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc., 2005, 127: 16866
-
[21]
[21]. Lin, B. C.; Cheng, C. P.; You, Z. Q.; Hsu, C. P. J. Am. Chem. Soc., 2005, 127: 66
-
[22]
[22]. Cornil, J.; Beljonne, D.; Calbert, J. P.; Brédas, J. L. Adv. Mater., 2001, 13: 1053
-
[23]
[23]. Yang, X. D.; Li, Q.; Shuai, Z. G. Nanotechnology, 2007, 18: 424029
-
[24]
[24]. Troisi, A.; Orlandi, G. Chem. Phys. Lett., 2001, 344: 509
-
[25]
[25]. Yin, S. W.; Yi, Y. P.; Li, Q. X.; Yu, G.; Liu, Y. Q.; Shuai, Z. G. J. Phys. Chem. A, 2006, 110: 7138
-
[26]
[26]. Gao, H. Z.; Qin, C. S.; Zhang, H. Y.; Wu, S. Y.; Su, Z. M.; Wang, Y. J. Phys. Chem. A, 2008, 112: 9097
-
[27]
[27]. Liang, C.; Newton, M. D. J. Phys. Chem., 1992, 97: 3199
-
[28]
[28]. Do nzdze, R. R.; Kuznetsov, A. M.; Vorotyntsev, M. A. Physica Status Solidi B-Basic Research, 1972, 54: 425
-
[29]
[29]. Newton, M. D. Chem. Rev., 1991, 91: 767
-
[30]
[30]. Larsson, S. J. Am. Chem. Soc., 1981, 103: 4034
-
[31]
[31]. L?觟wdin, P. O. J. Mol. Spectrosc., 1963, 10: 12
-
[32]
[32]. Siddarth, P.; Marcus, R. A. J. Phys. Chem., 1990, 94: 2985
-
[33]
[33]. Hush, N. S. Electrochim. Acta, 1968, 13: 1005
-
[34]
[34]. Creutz, C.; Newton, M. D. J. Photoch. Photobio. A, 1994, 82: 47
-
[35]
[35]. Cave, R. J.; Newton, M. D. J. Chem. Phys., 1997, 106: 9213
-
[36]
[36]. Cave, R. J.; Newton, M. D. Chem. Phys. Lett., 1996, 249: 15
-
[37]
[37]. Kryachko, E. S. J. Phys. Chem. A, 1999, 103: 4368
-
[38]
[38]. Hohenberg, P.; Kohn, W. Phys. Rev., 1964, 136: B864
-
[39]
[39]. Kohn, W.; Sham, L. J. Phys. Rev., 1965, 140: A1133
-
[40]
[40]. Becke, A. D. J. Chem. Phys., 1993, 98: 5648
-
[41]
[41]. Lee, C.; Yang, W. T.; Parr, R. G. Phys. Rev. B, 1988, 37: 785
-
[42]
[42]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09. Revision A.02. Wallingford, CT: Gaussian Inc., 2009
-
[43]
[43]. Liao, Y.; Su, Z. M.; Chen, Y. G.; Kan, Y. H.; Duan, H. X.; Qiu, Y. Q.; Wang, R. S. Chem. J. Chin. Univ., 2003, 24:477. [廖 奕, 苏忠民, 陈亚光, 阚玉和, 段红霞, 仇永清, 王荣顺. 高等学校化学学报, 2003, 24: 477]
-
[44]
[44]. Shuai, Z. G.; Shao, J. S. Theretical chemistry: principles and applications. Beijing: Science Press,2008. [帅志刚, 邵久书. 理论化学: 原理和应用. 北京: 科学出版社, 2008]
-
[45]
[45]. Silinsh, E. A.; Capek, V. Organic molecular crystal: interaction, localization and transport phenomena. New York: AIP Press, 1994: 332-333
-
[46]
[46]. Stefan, T. B.; Marta, M. T.; Peter, H.; Concepcioó, R. J. Am. Chem. Soc., 2004, 126: 6544
-
[47]
[47]. Brock, C. P.; Dunitz, J. D. Acta Crystallogr. Sect. B-Struct. Sci., 1990, 46: 795
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[3]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007
-
[7]
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
-
[8]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[9]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[10]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[11]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[12]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[13]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[14]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021
-
[15]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[16]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[17]
Siran Wang , Yinuo Wang , Yilong Zhao , Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033
-
[18]
Jia-He Li , Yu-Ze Liu , Jia-Hui Ma , Qing-Xiao Tong , Jian-Ji Zhong , Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080
-
[19]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[20]
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032
-
[1]
Metrics
- PDF Downloads(1372)
- Abstract views(3720)
- HTML views(26)