Citation: SUN Wen-Li, XU Jun, LU Wen-Qi. Chemical Structure and Growth Mechanism of a-SixC1-x:H Films Prepared by Plasma Enhanced Magnetron Sputtering[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2311-2316. doi: 10.3866/PKU.WHXB20100810 shu

Chemical Structure and Growth Mechanism of a-SixC1-x:H Films Prepared by Plasma Enhanced Magnetron Sputtering

  • Received Date: 18 January 2010
    Available Online: 11 June 2010

    Fund Project: 国家自然科学基金(60576022, 50572012)资助项目 (60576022, 50572012)

  • Hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were prepared by microwave electron cyclotron resonance (MW-ECR) plasma enhanced unbalance magnetron sputtering with a silicon target and CH4 as Si and C sources, respectively. The influence of CH4 flow rate and the deposition temperature on the chemical structure, stoichiometry, and hardness were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and nano-indentation. The results indicated that, as the CH4 flow rate increased from 5 to 45 cm3·min-1 (standard state), the amount of Si—CH2 groups and C—H groups increased constantly, but the number of Si—H groups did not change. The atomic concentration of C increases from 28% to 76% while Si decreases from 62% to 19%. The amount of Si—H and C—H groups in the deposited films decreases dramatically while the Si—C bonds and the hardness of the resultant films increase with an increase in deposition temperature at a constant CH4 flow rate. The atomic concentrations of Si and C remain almost constant at about 52% and 43%, respectively. The hardness of the deposited films with a constant CH4 flow rate of 15 cm3·min-1 increases to 29.7 GPa at a deposition temperature of 600 ℃. We propose a growth mechanism for the a-Si1-xCx:H films at room temperature (25 ℃) and at high temperature based on the characterization results.

  • 加载中
    1. [1]

      [1] Tesser, L. R.; Solomom, I. Phys. Rev. B, 1995, 52: 10962

    2. [2]

      [2] Wang, Y.; Yue, R. F.; Li, G. H.; Han, H. X.; Liao, X. B. Appl. Surf. Sci., 2001, 180: 87

    3. [3]

      [3] Yu, W.; Lu, W. B.; Han, L.; Fu, G. S. J. Phys. D-Appl. Phys., 2004, 37: 3304

    4. [4]

      [4] Tsai, H. K.; Lee, S. C. Appl. Phys. Lett., 1988, 52: 275

    5. [5]

      [5] Giorgis, F.; Ambrosone, G.; Coscia, U.; Ferrero, S.; Mandracci, P.; Pirri, C. F. Appl. Surf. Sci., 2001, 184: 204

    6. [6]

      [6] Chu, V.; Conde, J. P.; Jare , J.; Brogueira, P.; Rodriguez, J.; Barradas, N.; Soares, J. C. J. Appl. Phys., 1995, 78: 3164

    7. [7]

      [7] Trusso, S.; Barreca, F.; Neri, F. J. Appl. Phys., 2002, 92: 2485

    8. [8]

      [8] Sha, Z. D.; Wu, X. M.; Zhuge, L. J. Phys. Lett. A, 2005, 346: 186

    9. [9]

      [9] Song, D. Y.; Cho, E. C.; Conibeer, G.; Huang, Y. D.; Flynn, C.; Green, M. A. J. Appl. Phys., 2008, 103: 083544

    10. [10]

      [10] Timmons, A.; Todd, A. D. W.; Mead, S. D.; Carey, G. H.; Sanderson, R. J.; Mar, R. E.; Dahn, J. R. J. Electrochem. Soc., 2007, 154: A865

    11. [11]

      [11] Dimova-Malinovska, D. Vaccum, 2000, 58:183

    12. [12]

      [12] Raja palan, T.; Wang, X.; Lahlouh, B.; Ramkumar, C.; Dutta, P.; Gan padhyay, S. J. Appl. Phys., 2003, 94: 5252

    13. [13]

      [13] Kerdiles, S.; Berthelot, A.; urbilleau, F.; Rizk, R. Appl. Phys. Lett., 2000, 76: 2373

    14. [14]

      [14] Ding, W. Y.; Xu, J.; Li, Y. Q.; Piao, Y.; Gao, P.; Deng, X. L.; Dong, C. Acta Phys. Sin., 2006, 55: 1363 [丁万昱, 徐〓军, 李艳琴, 朴〓勇, 高〓鹏, 邓新绿, 董〓闯. 物理学报, 2006, 55: 1363]

    15. [15]

      [15] Xu, J. MW-ECR plasma enhanced unbalance magnetron sputtering and carbon nitride films preparation [D]. Dalian: Dalian University of Technology, 2002 [徐〓军. 微波-ECR等离子体增强非平衡磁控溅射技术及CN薄膜的制备研究[D]. 大连: 大连理工大学, 2002]

    16. [16]

      [16] Jean, A.; Chaker, M.; Diawara, Y.; Leung, P. K.; Gat, E.; Mercier, P. P.; Pépin, H.; Gujrathi, S.; Ross, G. G.; Kieffer, J. C. J. Appl. Phys., 1992, 72: 3110

    17. [17]

      [17] Mastelaro, V.; Flank, A. M.; Fantini, M. C. A.; Bittencourt, D. R. S.; Carre?觡o, M. N. P.; Pereyra, I. J. Appl. Phys., 1996, 79: 1324

    18. [18]

      [18] Pereyra, I.; Carre?觡o, M. N.; Tabacnicks, M. H.; Prado, R. J.; Fantini, M. C. A. J. Appl. Phys., 1998, 84: 2371

    19. [19]

      [19] Rinnert, H.; Vergnat, M.; Marchal, G.; Burneau, A. Appl. Phys. Lett., 1998, 72: 3157

    20. [20]

      [20] Choi, W. K.; Ong, T. Y.; Tan, L. S.; Loh, F. C.; Tan, K. L. J. Appl. Phys., 1998, 83: 4968

    21. [21]

      [21] Solomon, I.; Schmidt, M. P.; Sénémaud, C.; Khodja, M. D. Phys. Rev. B, 1988, 38: 13263

    22. [22]

      [22] Lee, W. Y. J. Appl. Phys., 1980, 51: 3365

    23. [23]

      [23] Lee, R. C.; Aita, C. R.; Tran, N. C. J. Vac. Sci. Technol. A, 1991, 9: 1351

    24. [24]

      [24] Peng, X. F.; Song, L. X.; Le, J.; Hu, X. F. J. Vac. Sci. Technol. B, 2002, 20: 159

    25. [25]

      [25] Pierson, H. O. Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications. New Jersey, USA: Noyes Publications, 1996: 137-139


  • 加载中
    1. [1]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    2. [2]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    3. [3]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    5. [5]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    6. [6]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    9. [9]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    10. [10]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    11. [11]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    12. [12]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    15. [15]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    16. [16]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    17. [17]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    18. [18]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    19. [19]

      Qiong Luo Zhiguang Xu Xuan Xu Ganquan Wang Bin Peng . Exploration of Innovative Teaching in Structural Chemistry Course under the Emerging Engineering Education Model. University Chemistry, 2025, 40(4): 200-207. doi: 10.12461/PKU.DXHX202407016

    20. [20]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

Metrics
  • PDF Downloads(1443)
  • Abstract views(2719)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return