Citation: YANG Wei-Ben, REN Li. Adsorption Mechanism of Nonylphenol Polyethoxylate onto Hypercrosslinked Resins[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2182-2188. doi: 10.3866/PKU.WHXB20100805 shu

Adsorption Mechanism of Nonylphenol Polyethoxylate onto Hypercrosslinked Resins

  • Received Date: 22 February 2010
    Available Online: 7 June 2010

    Fund Project: 国家自然科学基金(50978137) (50978137)江苏省自然科学基金(BK2008436)资助项目 (BK2008436)

  • The aim of this study was to determine the behaviors and mechanism of three hypercrosslinked polymers during the adsorption of nonylphenol ethoxylated decylether (NPEO-10) from aqueous solutions. The polymers were characterized to determine their specific surface areas, pore sizes, and elemental contents. The adsorption isotherms of NPEO-10 on the three polymers fit the Langmuir and double Langmuir models better than the Freundlich model, and the isotherm curves had similar shapes on a lg-lg scale. The amount of adsorbed NPEO-10 depends on the specific surface area, the pore size of the polymer, and the temperature of the solution. Thermodynamic analysis indicated that the adsorption process was characterized by an interaction of the hydrophobic part of the surfactant molecule with the surface of the polymer and by the formation of micelle-like aggregates on the surface of the polymer. A two-dimensional mixture consists of singly dispersed surfactant molecules and monolayered or bi-layered aggregates on the surface of the polymers. Adsorption dynamics confirmed that the adsorption process involved two plateaus which were related to the formation of a monolayer and a bi-layer. Finally, the elution processes were investigated to further establish the appropriate adsorption conditions for the purification of water containing NPEO-10.

  • 加载中
    1. [1]

      [1]. Hou, S. G.; Sun, H. W.; Gao, Y. Chemosphere, 2006, 63: 31

    2. [2]

      [2]. Gioiaa, D. D.; Sciubbaa, L.; Bertina, L. Water Res., 2009, 43: 2977

    3. [3]

      [3]. Hu, J. Y.; Chen, X.; Tao, G. Environ. Sci. Technol., 2007, 41: 4097

    4. [4]

      [4]. Ike, M.; Asano, M.; Belkada, F. D. Water Sci. Technol., 2002, 46: 127

    5. [5]

      [5]. John, D. M.; House, W. A.; White, G. F. Environ. Toxicol. Chem., 2000, 19: 293

    6. [6]

      [6]. Misra, K. P.; Dash, U.; Somasundaran, P. Ind. Eng. Chem. Res., 2009, 48: 3403

    7. [7]

      [7]. Caruso, F.; Serizawa, T.; Furlong, D. N. Langmuir, 1995, 11: 1546

    8. [8]

      [8]. Espantaleón, A. G.; Nieto, J. A.; Fernández, M. Appl. Clay Sci., 2003, 24: 105

    9. [9]

      [9]. Nevskaia, D. M.; Sepulveda-Escribano, A.; Guerrero-Ruiz, A. Phys. Chem. Chem. Phys., 2001, 3: 463

    10. [10]

      [10]. Streat, M.; Sweetland, L. A. React. Funct. Polym., 1997, 35: 99

    11. [11]

      [11]. Penner, N. A.; Nesterenko, P. N. J. Chromatogr. A, 2000, 884: 41

    12. [12]

      [12]. Valderrama, C.; Cortina, J. L.; Farran, A. J. Colloid Interface Sci., 2007, 310: 35

    13. [13]

      [13]. Tsyurupa, M. P.; Davankov, V. A. React. Funct. Polym., 2002, 53: 193

    14. [14]

      [14]. Ahn, J. H.; Jang, J. E.; Oh, C. G. Macromolecules, 2006, 39: 627

    15. [15]

      [15]. Yang, W. B.; Li, A. M.; Fan, J. Chemosphere, 2006, 64: 984

    16. [16]

      [16]. Valderrama, C.; Gamisans, X.; de las Heras, F. X. React. Funct. Polym., 2007, 67: 1515

    17. [17]

      [17]. Streat, M.; Sweetland, L. A. Trans IChemE B, 1998, 76: 115

    18. [18]

      [18]. Per, W.; Bengt, J. Langmuir, 1994, 10: 3268

    19. [19]

      [19]. Misra, P. K.; Mishra, B. K.; Somasunduran, P. J. Colloid Interface Sci., 2003, 265: 1

    20. [20]

      [20]. Shalaby, M. N. Polym. Adv. Technol., 2004, 15: 533

    21. [21]

      [21]. Marcel, R. B.; Luuk, K. K. Langmuir, 1992, 8: 2649

    22. [22]

      [22]. Li, B. Q.; Eli, R. Langmuir, 1996, 12: 5052

    23. [23]

      [23]. nzález-García, C. M.; nzález-Martín, M. L.; Gómez-Serrano, V.; Bruque, J. M.; Labajos-Broncano, L. Langmuir, 2000, 16: 3950

    24. [24]

      [24]. Drach, M.; Narkiewicz-Michaek, J.; Rudziński, W. Phys. Chem. Chem. Phys., 2002, 4: 2307

    25. [25]

      [25]. Calvoa, E.; Bravoa, R.; Ami a, A. Fluid Phase Equilib., 2009, 282: 14

    26. [26]

      [26]. Zhang, R.; Somasundaran, P. Langmuir, 2004, 20: 8552

    27. [27]

      [27]. Edwards, D. A.; Adeel, Z.; Luthy, R. G. Environ. Sci. Technol., 1994, 28: 1550

    28. [28]

      [28]. Adeel, Z.; Luthy, R. G. Environ. Sci. Technol., 1995, 29: 1032

    29. [29]

      [29]. Paria, S.; Yuet, P. K. Ind. Eng. Chem. Res., 2007, 46: 108

    30. [30]

      [30]. Liu, Y. J. Chem. Eng. Data, 2009, 54: 1981

    31. [31]

      [31]. Urbina-Villalba, G.; Reif, I.; Márquez, M. L. Colloids Surf. A, 1995, 99: 207

    32. [32]

      [32]. Levitz, P. E. C. R. Geoscience, 2002, 334: 665

    33. [33]

      [33]. Muller, N. Langmuir, 1993, 9: 96

    34. [34]

      [34]. Kibbey, T. C. G.; Hayes, K. Environ. Sci. Technol., 1997, 31: 1171

    35. [35]

      [35]. Wesemeyer, H.; Muller, B. W.; Muller, R. H. Int. J. Pharm., 1993, 89: 33

    36. [36]

      [36]. Ghiaci, M.; Kalbasi, R. J.; Abbaspour, A. Colloids Surf. A, 2007, 297: 105

    37. [37]

      [37]. Lindheimer, M.; Keh, E.; Zaini, S.; Partyka, S. J. Colloid Interface Sci., 1990, 138: 83

    38. [38]

      [38]. Winnik, M. A.; Bystryak, S. M.; Odrobina, E. Langmuir, 2000, 16: 6118

    39. [39]

      [39]. Mishra, S. K.; Kanun , S. B.; Rajeev. J. Colloid Interface Sci., 2003, 267: 42

    40. [40]

      [40]. Gallardo-Moreno, A. M.; nzález-García, C. M.; nzález- Martín, M. L.; Bruque, J. M. Colloids Surf. A, 2004, 249: 57


  • 加载中
    1. [1]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    2. [2]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    3. [3]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    4. [4]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    5. [5]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    8. [8]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    9. [9]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    10. [10]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    16. [16]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    17. [17]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    18. [18]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    19. [19]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    20. [20]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

Metrics
  • PDF Downloads(1157)
  • Abstract views(2716)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return