Citation: ZHANG Wei-Min, YANG Zhen-Dong, LIU Jia, SUN Zhong-Xi. Determination of Acid-Base Equilibrium Constants on Aqueous Mesoporous Silica Surfaces[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2109-2114. doi: 10.3866/PKU.WHXB20100801 shu

Determination of Acid-Base Equilibrium Constants on Aqueous Mesoporous Silica Surfaces

  • Received Date: 10 March 2010
    Available Online: 18 May 2010

    Fund Project: 国家自然科学基金(20677022)资助项目 (20677022)

  • We used the potentiometric titration technique to study the deprotonation reactions at aqueous mesoporous silica surfaces. The concentration of surface proton binding sites was obtained by the Gran plot method using the acid-base titration data. The relevant equilibrium constants of the surfaces in terms of the constant capacitance model (CCM) were determined based on the experimental results using the FITEQL 4.0 program. The results indicate that the surface deprotonation behavior of the mesoporous silica suspensions is significantly different from that of amorphous silica. This behavior can be described by two surface reactions with surface bidentate and monodentate deprotonation constants of pKa1=6.78±0.15 and pKa2=10.25±0.22, respectively. Using these deprotonation constants, we established a surface speciation diagram for mesoporous silica in aqueous suspensions as a function of pH and discussed the effect of surface capacitance on surface speciation.

  • 加载中
    1. [1]

      [1]. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359: 710

    2. [2]

      [2]. Zhang, D. Q.; Wan, Y.; Li, H. X. Acta Chim. Sin., 2006, 64: 894 [张蝶青, 万 颖, 李和兴. 化学学报, 2006, 64: 894]

    3. [3]

      [3]. Li, J. S.; Gu, J.; Xia, M. Y.; Yuan, J. F.; Sun, X. Y.; Wang, L. J. Acta Chim. Sin., 2008, 66:2305. [李健生, 顾 娟, 夏敏亚, 袁金芳, 孙秀云, 王连军. 化学学报, 2008, 66: 2305]

    4. [4]

      [4]. Zhang, H.; Wu, J.; Zhou, L.; Zhang, D.; Qi, L. Langmuir, 2007, 23: 1107

    5. [5]

      [5]. Schindler, P. W.; Kamber, H. R. Helv. Chim. Acta, 1968, 51: 1781

    6. [6]

      [6]. Du, Q.; Sun, Z.; Willis, F.; Tang, H. X. J. Colloid Interface Sci., 1997, 187: 221

    7. [7]

      [7]. Wang, Y.; Du, B.; Dou, X.; Liu, J; Shi, B.; Wang, D.; Tang, H. Colloids and Surface A, 2007, 307: 16

    8. [8]

      [8]. Shen, Z.; Zhou, S.; Pei, S. Estuarine, Coastal and Shelf Science, 2008, 78: 481

    9. [9]

      [9]. Herbelin, A.; Westall, J. C. FITEQL ver 4.0. Corvallis, OR: Department of Chemistry, Ore n State, 1999

    10. [10]

      [10]. Pan, J.; Liu, R.; Tang, H. J. Environmental Sci., 2007, 19: 403

    11. [11]

      [11]. Sun, Z. X.; Guo, S. Y. Chem. J. Chin. Univ., 2006, 27:1351. [孙中溪, 郭淑云. 高等学校化学学报, 2006, 27: 1351]

    12. [12]

      [12]. Huang, C.; Stumm, W. J. Colloid Interface Sci., 1973, 43: 409

    13. [13]

      [13]. Schindler, P. W.; Fürst, B.; Dick, R.; Wolf, P. U. J. Colloid Interface Sci., 1976, 55: 469

    14. [14]

      [14]. Davydov, V. Y.; Kiselev, A. V.; Zhuravlev, L. T. Trans. Faraday Soc., 1964, 60: 2254

    15. [15]

      [15]. Lützenkirchen, J.; Boily, J. F.; Lovgren, L.; Sjoberg, S. Geochimica et Cosmochimica Acta, 2002, 66: 3389

    16. [16]

      [16]. Charlet, I.; Schindler, P. W.; Spadini, L.; Furrer, G.; Zysset, M. Aquatic Science, 1993, 55: 291

    17. [17]

      [17]. Jordan, N.; Marmier, N.; Lomenech, C.; Giffaut, E.; Ehrhardt, J. J. J. Colloid Interface Sci., 2007, 312: 224

    18. [18]

      [18]. Puigdomenech, I. MEDUSA ver 2.0. Stockholm, Sweden: Royal Institute of Technology, 1999

    19. [19]

      [19]. Lützenkirchen, J. J. Colloid Interface Sci., 1999, 210: 384

    20. [20]

      [20]. Lagerstrom, G. Acta Chem. Scand., 1959, 13: 722


  • 加载中
    1. [1]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    2. [2]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    3. [3]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    4. [4]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    5. [5]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Wenhui Li Changshuo Zhu Xinyu Cui Chenfei Zhao Lina Qiu Yan Li Chuandong Wu Min Yang Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    10. [10]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    11. [11]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    12. [12]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    13. [13]

      Yuhao Chen Zhuo Cheng Qijun Hu Jian Pei . 酸碱理论的发展历程. University Chemistry, 2025, 40(8): 368-375. doi: 10.12461/PKU.DXHX202412001

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    17. [17]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    18. [18]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

Metrics
  • PDF Downloads(1434)
  • Abstract views(4332)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return