Citation: Dan Li,  Hui Xin,  Xiaofeng Yi. Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production[J]. University Chemistry, ;2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046 shu

Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production

  • Received Date: 12 December 2023
    Revised Date: 10 January 2024

  • This study outlines the design of a comprehensive chemical experiment to synthesize Ni-based nanocatalysts with varying grain sizes for biofuel production. Ni/CeO2、Ni/CeO2-SiO2and Ni/SiO2 nanomaterials were prepared via a conventional impregnation method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The integrated scientific training process—from catalyst synthesis and structural characterization to performance evaluation—not only cultivate students’ comprehensive experimental skills, but also enhance their research literacy. This experiment aims to illuminate the intrinsic relationship between material structure and function, fostering a curiosity for investigating the unknown in the scientific realm. Moreover, the experiment incorporates a curricular focus on the “energy crisis”, heightening students’ awareness of current energy and environmental challenges, and inspiring a personal commitment to environmental stewardship.
  • 加载中
    1. [1]

    2. [2]

      Gosselink, R. W.; Hollak, S. A. W.; Chang, S. W.; Haveren, J. V.; Jong, K. P. D.; Bitter, J. H.; Es, D. S. V. Chem. Sus. Chem. 2013, 6, 1576.

    3. [3]

      Hermida, L.; Abdullah, A. Z.; Mohamed, A. R. Renew. Sust. Energy Rev. 2015, 42, 1223.

    4. [4]

      Phichitsurathaworn, P.; Choojun, K.; Poo-arporn, Y.; Sooknoi, T. Appl. Catal. A: Gen. 2020, 602, 117644.

    5. [5]

      Remón, J.; Casales, M.; Gracia, J.; Callén, M. S.; Pinilla, J. L.; Suelves, I. Chem. Eng. J. 2021, 405, 126705.

    6. [6]

      Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; Van bokhoven, J. A. Science, 2017, 356, 523.

    7. [7]

      Wang, Z. J.; Chang, H. H.; Zhang, J.; Sun, Z. H.; Wu, Y. L.; Liu, Y. M.; Zhu, Y. F.; He, H. Y.; Cao, Y.; Bao, X. H. Chem. Commun. 2022, 58 (23), 3779.

    8. [8]

      Li, B.; Zhang, B.; Guan, Q.; Chen, S.; Ning, P. Int. J. Hydrog. Energy 2018, 43, 19010.

    9. [9]

      Fu, L.; Li, Y.; Cui, H.; Ba, W.; Liu, Y. Appl. Catal. A: Gen. 2021, 623, 118258.

    10. [10]

      Yan, C.; Li, H.; Ye, Y.; Wu, H.; Cai, F.; Si, R.; Xiao, J.; Miao, S.; Xie, S.; Yang, F.; et al. Energy Environ. Sci. 2018, 11, 1204.

    11. [11]

      Ni, Z.; Djitcheu, X.; Gao, X.; Wang, J.; Liu, H.; Zhang, Q. Sci. Rep. 2022, 12, 5344.

    12. [12]

      Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. J. Phys. Chem. B 2005, 109, 24380.

    13. [13]

      Zhang, H.; Estudillo-Wong, L. A.; Gao, Y.; Feng, Y.; Alonso-Vante, N. J. Energy Chem. 2021, 59, 615.

    14. [14]

      Zeng, Y.; Wang, H.; Yang, H.; Juan, C.; Li, D.; Wen, X.; Zhang, F.; Zhou, J.; Peng, C.; Hu, C. Chin. J. Catal. 2023, 47, 229.

    15. [15]

      Gao, S.; Li, Y.; Guo, W.; Ding, X.; Zheng, L.; Wu, L.; Yan, H.; Wang, Y. Mol. Catal. 2022, 533, 112766.

    16. [16]

      Jomjaree, T.; Sintuya, P.; Srifa, A.; Koo-amornpattana, W.; Kiatphuengporn, S.; Assabumrungrat, S.; Sudoh, M.; Watanabe, R.; Fukuhara, C.; Ratchahat, S. Catal. Today 2021, 375, 234.

    17. [17]

      Hollinger, G. Appl. Surf. Sci. 1981, 8 (3), 318.

    18. [18]

      Yan, X.; Hu, T.; Liu, P.; Li, S.; Zhao, B.; Zhang, Q.; Jiao, W.; Chen, S.; Wang, P.; Lu, J.; et al. Appl. Catal. B: Environ. 2019, 246, 221.

    19. [19]

      Zhang, B.; Zhang, S.; Liu, B. Appl. Surf. Sci. 2020, 529, 147068.

    20. [20]

      Zhang, Y.; Lu, J.; Zhang, L.; Fu, T.; Zhang, J.; Zhu, X.; Gao, X.; He, D.; Luo, Y.; Dionysiou, D. D.; et al. Appl. Catal. B: Environ. 2022, 309, 121249.

    21. [21]

      Zhang, Z.; Li, J.; Gao, W.; Ma, Y.; Qu, Y. J. Mater. Chem. A 2015, 3 (35), 18074.

    22. [22]

      Zhang, L. J.; Chen, R. H.; Tu, Y.; Gong, X. Y.; Cao, X.; Xu, Q.; Li, Y.; Ye, B. J.; Ye, Y. F.; Zhu, J. F. ACS Catal. 2023, 13 (4), 2202.

    23. [23]

      Cheng, Z.; Shan, H.; Sun, Y.; Zhang, L.; Jiang, H.; Li, C. Appl. Surf. Sci. 2020, 513, 145766.

    24. [24]

      Li, M.; Amari, H.; van Veen, A. C. Appl. Catal. B: Environ. 2018, 239, 27.

    25. [25]

    26. [26]

  • 加载中
    1. [1]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(0)
  • Abstract views(148)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return