Citation: Lingdong Sun,  Yingxia Wang. Quantum Dots: Light up Nanoscience—A Brief Introduction to the Nobel Prize in Chemistry 2023[J]. University Chemistry, ;2024, 39(1): 1-6. doi: 10.3866/PKU.DXHX202311076 shu

Quantum Dots: Light up Nanoscience—A Brief Introduction to the Nobel Prize in Chemistry 2023

  • Corresponding author: Lingdong Sun,  Yingxia Wang, 
  • Received Date: 20 November 2023

  • With the advancement of the field of chemistry, the synthesis of an increasingly diverse range of compounds has become feasible. The study of substances now encompasses various scales:from macroscopic to microscopic, often extending into the mesoscopic domain, typically at the nanoscale. At the nanometer scale, many materials manifest size-dependent effects, with quantum dots standing out as the most prominent representative. Quantum dots denote a class of semiconductors that exhibit size-dependent quantum effects when their dimensions closely approach the exciton Bohr radius. Through meticulous size control while preserving a consistent chemical composition, it is plausible to modulate the bandgap along with the accompanying absorption and emission spectra. This characteristic brings new opportunities for the research and application of semiconductor nanomaterials. The 2023 Nobel Prize in Chemistry was awarded to quantum dots and claimed that they light up nanoscience. Combining the three Nobel laureates' work, this article embarks upon the historical trajectory of the discovery and synthesis of quantum dots, offering a concise overview of the pertinent scientific achievements.
  • 加载中
    1. [1]

      Tiny ‘Quantum Dot’ Particles Win Chemistry Nobel. Nature 2023, 622, 227.

    2. [2]

      Quantum dots—Seeds of Nanoscience. [2023-11-28]. https://www.nobelprize.org/prizes/chemistry/2023/press-release/

    3. [3]

      Ekimov, A. I.; Onushchenko, A. A.; Tsekhomskii, V. Sov. Glass Phys. Chem. 1980, 6, 5.

    4. [4]

      Ekimov, A. I.; Onushchenko, A. A. JETP Lett. 1981, 34, 345.

    5. [5]

      Efros, A. L.; Efros, A. L. Sov. Phys. Semicond. 1982, 16 (7), 772.

    6. [6]

      Rossetti, R.; Brus, L. J. Phys. Chem. 1982, 86, 4470.

    7. [7]

      Rossetti, R.; Nakahara, S.; Brus, L. J. Chem. Phys. 1983, 79, 1086.

    8. [8]

      Efros, A. L.; Brus, L. E. ACS Nano 2021, 15 (4), 6192.

    9. [9]

      Wang, F.; Tang, R.; Buhro, W. E. Nano Lett. 2008, 8, 3521.

    10. [10]

      Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.

    11. [11]

      Hines, M. A.; Guyot-Sionnest, P. J. Phys.Chem. 1996, 100, 468.

    12. [12]

      Heinze, D.; Breddermann, D.; Zrenner, A.; Schumacher, S. Nat. Commun. 2015, 6, 8473.

    13. [13]

      Nirmal, N.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D; Brus, L. E. Nature 1996, 383, 802.

    14. [14]

      Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335.

    15. [15]

      Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Science 2009, 324, 1417.

    16. [16]

      Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.

    17. [17]

      Xu, J.; Voznyy, O.; Liu, M.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; de Arquer, F. P. G.; et al. Nat. Nanotechnol. 2018, 13, 456.

    18. [18]

      Son, D. H.; Hughes, S. M.; Yin, Y.; Alivisatos, A. P. Science 2004, 306, 1009.

    19. [19]

      Qu, L.; Peng, Z. A.; Peng, X. Nano Lett. 2001, 1, 333.

    20. [20]

      Fang, M.; Peng, C. W.; Pang, D.-W.; Li, Y. Cancer Biol. Med. 2012, 9, 151.

    21. [21]

      Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.

    22. [22]

      Chan, W. C. W.; Nie, S. Science 1998, 281, 2016.

    23. [23]

      Stroh, M.; Zimmer, J. P.; Duda, D. G.; Levchenko, T. S.; Cohen, K. S.; Brown, E. B.; Scadden, D. T.; Torchilin, V. P.; Bawendi, M. G.; et al. Nat. Med. 2005, 11, 678.

    24. [24]

      Jun, S.; Jang, E. Chem. Commun. 2005, 4616.

    25. [25]

      Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Science 1996, 272, 255.

    26. [26]

      Sfeir, M. Y.; Wang, F.; Huang, L.; Chuang, C.; Hone, J.; O’Brien, S. P.; Heinz, T. F.; Brus, L. E. Science 2004, 306, 1540.

    27. [27]

      Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Nature 2003, 426, 271.

    28. [28]

      Won, Y.-H.; Cho, O.; Kim, T.; Chung, D.-Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Nature 2019, 575, 634.

    29. [29]

      Montanarella, F.; Kovalenko, M. V. ACS Nano 2022, 16, 5085.

    30. [30]

      Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Nat. Mater. 2018, 17 (5), 394.

  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    5. [5]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    6. [6]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    7. [7]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    8. [8]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    9. [9]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    10. [10]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    11. [11]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    12. [12]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    13. [13]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    14. [14]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    15. [15]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    16. [16]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    17. [17]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    18. [18]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    19. [19]

      Wanping Chen . Preliminary Exploration of the Chemistry Curriculum Content Selection for Science Education Major. University Chemistry, 2025, 40(3): 251-258. doi: 10.12461/PKU.DXHX202405065

    20. [20]

      Hongyan Feng Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087

Metrics
  • PDF Downloads(28)
  • Abstract views(1102)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return