Citation:
Lingdong Sun, Yingxia Wang. Quantum Dots: Light up Nanoscience—A Brief Introduction to the Nobel Prize in Chemistry 2023[J]. University Chemistry,
;2024, 39(1): 1-6.
doi:
10.3866/PKU.DXHX202311076
-
With the advancement of the field of chemistry, the synthesis of an increasingly diverse range of compounds has become feasible. The study of substances now encompasses various scales:from macroscopic to microscopic, often extending into the mesoscopic domain, typically at the nanoscale. At the nanometer scale, many materials manifest size-dependent effects, with quantum dots standing out as the most prominent representative. Quantum dots denote a class of semiconductors that exhibit size-dependent quantum effects when their dimensions closely approach the exciton Bohr radius. Through meticulous size control while preserving a consistent chemical composition, it is plausible to modulate the bandgap along with the accompanying absorption and emission spectra. This characteristic brings new opportunities for the research and application of semiconductor nanomaterials. The 2023 Nobel Prize in Chemistry was awarded to quantum dots and claimed that they light up nanoscience. Combining the three Nobel laureates' work, this article embarks upon the historical trajectory of the discovery and synthesis of quantum dots, offering a concise overview of the pertinent scientific achievements.
-
Keywords:
- Quantum size effect,
- Quantum dots,
- Nanoscience,
- Synthesis chemistry
-
-
-
[1]
Tiny ‘Quantum Dot’ Particles Win Chemistry Nobel. Nature 2023, 622, 227.
-
[2]
Quantum dots—Seeds of Nanoscience. [2023-11-28]. https://www.nobelprize.org/prizes/chemistry/2023/press-release/
-
[3]
Ekimov, A. I.; Onushchenko, A. A.; Tsekhomskii, V. Sov. Glass Phys. Chem. 1980, 6, 5.
-
[4]
Ekimov, A. I.; Onushchenko, A. A. JETP Lett. 1981, 34, 345.
-
[5]
Efros, A. L.; Efros, A. L. Sov. Phys. Semicond. 1982, 16 (7), 772.
-
[6]
Rossetti, R.; Brus, L. J. Phys. Chem. 1982, 86, 4470.
-
[7]
Rossetti, R.; Nakahara, S.; Brus, L. J. Chem. Phys. 1983, 79, 1086.
-
[8]
Efros, A. L.; Brus, L. E. ACS Nano 2021, 15 (4), 6192.
-
[9]
Wang, F.; Tang, R.; Buhro, W. E. Nano Lett. 2008, 8, 3521.
-
[10]
Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
-
[11]
Hines, M. A.; Guyot-Sionnest, P. J. Phys.Chem. 1996, 100, 468.
-
[12]
Heinze, D.; Breddermann, D.; Zrenner, A.; Schumacher, S. Nat. Commun. 2015, 6, 8473.
-
[13]
Nirmal, N.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D; Brus, L. E. Nature 1996, 383, 802.
-
[14]
Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335.
-
[15]
Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Science 2009, 324, 1417.
-
[16]
Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.
-
[17]
Xu, J.; Voznyy, O.; Liu, M.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; de Arquer, F. P. G.; et al. Nat. Nanotechnol. 2018, 13, 456.
-
[18]
Son, D. H.; Hughes, S. M.; Yin, Y.; Alivisatos, A. P. Science 2004, 306, 1009.
-
[19]
Qu, L.; Peng, Z. A.; Peng, X. Nano Lett. 2001, 1, 333.
-
[20]
Fang, M.; Peng, C. W.; Pang, D.-W.; Li, Y. Cancer Biol. Med. 2012, 9, 151.
-
[21]
Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
-
[22]
Chan, W. C. W.; Nie, S. Science 1998, 281, 2016.
-
[23]
Stroh, M.; Zimmer, J. P.; Duda, D. G.; Levchenko, T. S.; Cohen, K. S.; Brown, E. B.; Scadden, D. T.; Torchilin, V. P.; Bawendi, M. G.; et al. Nat. Med. 2005, 11, 678.
-
[24]
Jun, S.; Jang, E. Chem. Commun. 2005, 4616.
-
[25]
Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Science 1996, 272, 255.
-
[26]
Sfeir, M. Y.; Wang, F.; Huang, L.; Chuang, C.; Hone, J.; O’Brien, S. P.; Heinz, T. F.; Brus, L. E. Science 2004, 306, 1540.
-
[27]
Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Nature 2003, 426, 271.
-
[28]
Won, Y.-H.; Cho, O.; Kim, T.; Chung, D.-Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Nature 2019, 575, 634.
-
[29]
Montanarella, F.; Kovalenko, M. V. ACS Nano 2022, 16, 5085.
-
[30]
Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Nat. Mater. 2018, 17 (5), 394.
-
[1]
-
-
-
[1]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[2]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[3]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[4]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[5]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[6]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[7]
Hongyan Chen , Yajun Hou , Shui Hu , Zhuoxun Wei , Fang Zhu , Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109
-
[8]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[9]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[10]
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
-
[11]
Dongju Zhang , Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032
-
[12]
Peifeng Su , Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087
-
[13]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[14]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[15]
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
-
[16]
Wenkai Chen , Yunjia Shen , Xiangmeng Kong , Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018
-
[17]
Hao Ren , Wen Zhao , Fangna Dai , Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145
-
[18]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[19]
Wanping Chen . Preliminary Exploration of the Chemistry Curriculum Content Selection for Science Education Major. University Chemistry, 2025, 40(3): 251-258. doi: 10.12461/PKU.DXHX202405065
-
[20]
Hongyan Feng , Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087
-
[1]
Metrics
- PDF Downloads(28)
- Abstract views(1102)
- HTML views(160)