Citation: Zitong Chen,  Zipei Su,  Jiangfeng Qian. Aromatic Alkali Metal Reagents: Structures, Properties and Applications[J]. University Chemistry, ;2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054 shu

Aromatic Alkali Metal Reagents: Structures, Properties and Applications

  • Received Date: 16 November 2023
    Revised Date: 1 February 2024

  • Aromatic alkali metal reagents are prepared through the spontaneous reaction between alkali metals and aromatic compounds in aprotic solvents. This reaction involves the transfer of electrons from the alkali metal to the aromatic compound, resulting in the formation of radical anions. The properties of aromatic alkali metal reagents vary depending on the choice of aromatic compounds, alkali metals, and aprotic solvents. These reagents have found extensive applications in fields such as anionic polymerization, chemical prelithiation of electrode materials and ion-intercalation-assisted exfoliation of two-dimensional materials. Despite their promising applications, the introduction of aromatic alkali metal compounds in most basic chemistry textbooks is limited. This article aims to address this gap by providing a comprehensive review of the structure, properties, and recent advances in the application of aromatic alkali metal reagents. By expanding the coverage of these reagents in teaching, it will contribute to broadening students’ understanding of cutting-edge scientific research, enhancing their scientific literacy, and promoting the reform of undergraduate chemistry education.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Armit, J. W.; Robinson, R. Transactions 1925, 127, 1604.

    4. [4]

    5. [5]

      Hückel, E. Zeitschrift für Physik 1931, 70, 204.

    6. [6]

      Tsipis, A. C. Coordin. Chem. Rev. 2014, 272, 1.

    7. [7]

    8. [8]

    9. [9]

      Willstätter, R. Science 1933, 78, 271.

    10. [10]

      Hückel, W.; Bretschneider, H. Justus Liebigs Annalen der Chemie 1939, 540, 157.

    11. [11]

      Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 60, 4090.

    12. [12]

      Slates, R. V.; Szwarc, M. J. Phys. Chem. 2002, 69, 4124.

    13. [13]

      Walczak, M.; Stucky, G. D. J. Organomet. Chem. 1975, 97, 313.

    14. [14]

      Bock, H.; Arad, C.; Näther, C.; Havlas, Z. Chem. Commun. 1995, 2393.

    15. [15]

      Scott, T. A.; Ooro, B. A.; Collins, D. J.; Shatruk, M.; Yakovenko, A.; Dunbar, K. R.; Zhou, H. C. Chem. Commun. 2009, 65.

    16. [16]

      Pennachio, M.; Zhou, Z.; Wei, Z.; Tsybizova, A.; Gershoni-Poranne, R.; Petrukhina, M. A. Organometallics. 2023, 42, 2492.

    17. [17]

      Lipkin, D.; Paul, D. E.; Townsend, J.; Weissman, S. I. Science 1953, 117, 534.

    18. [18]

      Beckett, A.; Porter, G. Transactions of the Faraday Society 1963, 59, 2038.

    19. [19]

      Paul, D. E.; Lipkin, D.; Weissman, S. I. J. Am. Chem. Soc. 2002, 78, 116.

    20. [20]

      Bronsted, J. N. J. Phys. Chem. 1926, 30, 777.

    21. [21]

      Scott, N. D.; Walker, J. F.; Hansley, V. L. J. Am. Chem. Soc. 2002, 58, 2442.

    22. [22]

      Fantin, M.; Lorandi, F.; Gennaro, A.; Isse, A. A.; Matyjaszewski, K. Synthesis 2017, 49, 3311.

    23. [23]

      Darcy, J. W.; Koronkiewicz, B.; Parada, G. A.; Mayer, J. M. Acc. Chem. Res. 2018, 51, 2391.

    24. [24]

      Mai, D. N.; Baxter, R. D. Top. Catal. 2017, 60, 580.

    25. [25]

      Brooks, D. W.; Meyers, E. A.; Sicilio, F.; Nearing, J. C. J. Chem. Educ. 1973, 50, 487.

    26. [26]

      Houle, F. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1978, 100, 3290.

    27. [27]

      Hassan, S. Z.; Tauch, J.; Kas, M.; Nötzold, M.; Carrera, H. L.; Endres, E. S.; Wester, R.; Weidemüller, M. Nat. Commun. 2022, 13, 818.

    28. [28]

      Verma, P.; Truhlar, D. G. Trends in Chemistry 2020, 2, 302.

    29. [29]

      Wentworth, W. E.; Chen, E.; Lovelock, J. E. J. Phys. Chem. 2002, 70, 445.

    30. [30]

      Heathcock, C. H. Science 1981, 214, 395.

    31. [31]

      Claisen, L.; Ponder, A. C. Justus Liebigs Annalen der Chemie 1884, 223, 137.

    32. [32]

      Perkin, W. H. J. Chem. Soc. 1868, 21, 181.

    33. [33]

      Scott, N. D.; Walker, J. F. Preparation of Organic Cyano Compounds. US. Pat. 2171869, 1939.

    34. [34]

      Mundy, B. P.; Bruss, D. R.; Kim, Y. S.; Larsen, R. D.; Warnet, R. J. Tetrahedron Lett. 1985, 26, 3927.

    35. [35]

      Zhu, X. Z.; Mitsui, C.; Tsuji, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 13596.

    36. [36]

      Holy, N. L. Chem. Rev. 1974, 74, 243.

    37. [37]

      Szwarc, M. Nature 1956, 178, 1168.

    38. [38]

    39. [39]

      Hontsu, S.; Nakamori, M.; Kato, N.; Tabata, H.; Ishii, J.; Matsumoto, T.; Kawai, T. Jpn. J. Appl. Phys. 1998, 37, L1169.

    40. [40]

      Shen, Y. F.; Qian, J. F.; Yang, H. X.; Zhong, F. P.; Ai, X. P. Small 2020, 16, 1907602.

    41. [41]

      Liu, M.; Zhang, J.; Guo, S.; Wang, B.; Shen, Y.; Ai, X.; Yang, H.; Qian, J. ACS Appl. Mater. Inter. 2020, 12, 17620.

    42. [42]

      Shen, Y. F.; Shen, X. H.; Yang, M.; Qian, J. F.; Cao, Y. L.; Yang, H. X.; Luo, Y.; Ai, X. P. Adv. Funct. Mater. 2021, 31, 2101181.

    43. [43]

      Liu, M.; Yang, Z.; Shen, Y.; Guo, S.; Zhang, J.; Ai, X.; Yang, H.; Qian, J. J. Mater. Chem. A 2021, 9, 5639.

    44. [44]

      Wu, C.; Hu, J. M.; Ye, L.; Su, Z. P.; Fang, X. L.; Zhu, X. L.; Zhuang, L.; Ai, X. P.; Yang, H. X.; Qian, J. F. ACS Sustainable Chem. Eng. 2021, 9, 16384.

    45. [45]

      Wu, C.; Hu, J. M.; Chen, H. X.; Zhang, C. Y.; Xu, M. L.; Zhuang, L.; Ai, X. P.; Qian, J. F. Energy Storage Mater. 2023, 60, 102803.

    46. [46]

      Wu, C.; Xu, M.; Zhang, C.; Ye, L.; Zhang, K.; Cong, H.; Zhuang, L.; Ai, X.; Yang, H.; Qian, J. Energy Storage Mater. 2023, 55, 154.

    47. [47]

      Wang, Z. Y.; Mi, B. X. Environ. Sci. Technol. 2017, 51, 8229.

    48. [48]

      Qiu, K. Q.; Zou, W. W.; Fang, Z.; Wang, Y. X.; Bell, S.; Zhang, X.; Tian, Z. Q.; Xu, X. Q.; Ji, B. H.; Li, D. C.; et al. ACS Nano 2023, 17, 4716.

    49. [49]

      Zhu, X. L.; Su, Z. P.; Wu, C.; Cong, H. J.; Ai, X. P.; Yang, H. X.; Qian, J. F. Nano Lett. 2022, 22, 2956.

  • 加载中
    1. [1]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    5. [5]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    11. [11]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    12. [12]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    13. [13]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    19. [19]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(0)
  • Abstract views(231)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return