Citation:
Quanliang Chen, Zhaohui Zhou. Research on the Active Site of Nitrogenase over Fifty Years[J]. University Chemistry,
;2024, 39(7): 287-293.
doi:
10.3866/PKU.DXHX202310133
-
Nitrogenase is a catalyst used by nitrogen-fixing microorganisms to convert atmospheric nitrogen into ammonia at ambient temperature and pressure. The structure of the active site in molybdenum nitrogenase has evolved from Fe2S2∙Mo2O2 to MoFe7S9C(R-Hhomocit)(cys)(his) (H4homocit = homocitric acid, Hcys = cysteine, Hhis = histidine) through advancements in chemical modeling, spectroscopy, and theoretical calculations, especially for structural biology. This paper provides a comprehensive review of the important achievements in the study of the active site of nitrogenase from a chemical structure perspective over the past fifty years.
-
Keywords:
- Nitrogenase,
- MoFe-protein,
- FeMo-cofactor,
- Active site
-
-
-
[1]
Burgess, B.K.; Lowe, D. J. Chem. Rev. 1996, 96, 2983.
-
[2]
Smith, B, E.; Richards, R. L.; Newton, W. E. Catalysts for Nitrogen Fixation: Nitrogenases, Relevant Chemical Models and Commercial Processes, 1st ed.; Springer: the Netherlands, 2004.
-
[3]
-
[4]
-
[5]
Shah, V. K.; Brill, W. J. Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 3249.
-
[6]
Cramer, S. P.; Hodgson, K. O.; Gillum, W. O.; Mortenson, L. E. J. Am. Chem. Soc. 1978, 100, 3398.
-
[7]
Lu, J. In Nitrogen Fixation; Newton, W. E.; Orme-Johnson, W. H., Eds.; University Press: Baltimore, M. D. USA, 1980; Vol. I, p. 343.
-
[8]
Holm, R. H. Chem. Soc. Rev. 1981, 10, 455.
-
[9]
Zimmerman, R.; Miinck, E.; Brill, W. J.; Shah, V. K.; Henzl, M. T.; Rawlings, J.; Orme-Johnson, W. H. Biochem. Biophys. Acta 1978, 537, 185.
-
[10]
Kurtz, D. M.; McMillan, R. S.; Burgess, B. K.; Mortenson, L. E.; Holm, R. H. Proc. Natl. Acad. Sci. U. S. A. 1979, 76, 4986.
-
[11]
Coucouvanis, D.; Kanatzidis, M. G.; Dunham, W. R.; Hagen, W. R. J. Am. Chem. Soc. 1984, 106, 7998.
-
[12]
-
[13]
Challen, P. R.; Koo, S. K.; Dunham, W. R.; Coucouvanis, D. J. Am. Chem. Soc. 1990, 112, 8606.
-
[14]
Coucouvanis, D.; Challen, P. R.; Koo, S. K.; Davis, W. M.; Butler, W.; Dunham, W. R. Inorg. Chem. 1989, 28, 4181.
-
[15]
Teo, B. K.; Averill, B. A. Biochem. Biophys. Res. Commun. 1979, 88, 1454.
-
[16]
Chen, J.; Christiansen, J.; Tittsworth, R. C.; Hales, B. J.; George, S. J.; Coucouvanis, D.; Carmer, S. P. J. Am. Chem. Soc. 1993, 115, 5509.
-
[17]
Georgiadis, M. M.; Komiya, H.; Chakrabarti, P.; Woo, D.; Kornuc, J. J.; Rees, D. C. Science 1992, 257, 1653.
-
[18]
Kim, J.; Rees, D. C. Science 1992, 257, 1677.
-
[19]
Chan, M. K.; Kim J.; Rees, D. C. Science 1993, 260, 792.
-
[20]
Peters, J. W.; Stowell, M. H. B.; Soltis, S. M.; Finnegan, M. G.; Johnson, M. K.; Rees, D. C. Biochemistry 1997, 36, 1181.
-
[21]
Mayer, S. M.; Lawson, D. M.; Gormal, C. A.; Roe, S. M.; Smith, B. E. J. Mol. Biol. 1999, 292, 871.
-
[22]
Einsle, O.; Tezcan, F. A.; Andrade, S. L.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696.
-
[23]
Schmid, B.; Ribbe, M. W.; Einsle, O.; Yoshida, M.; Thomas, L. M.; Dean, D. R.; Rees, D. C.; Burgess, B. K. Science 2002, 296, 352.
-
[24]
Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Science 2011, 334, 940.
-
[25]
Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.; Bergmann, U.; Debeer, S.; Lancaster K. M. Science 2011, 334, 974.
-
[26]
Ludden, P. W.; Shah, V. K.; Roberts, G. P.; Homer, M.; Allen, R.; Paustian, T.; Roll, J.; Chatterjee, R.; Madden, M.; Allen, J.; et al. Molybdenum Enzymes Cofactors and Model Systems; American Chemical Society: Washington, DC, USA, 1993; pp. 196-215.
-
[27]
-
[28]
Wang, S. Y.; Jin, W. T.; Chen, H. B.; Zhou, Z. H. Dalton Trans. 2018, 47(22), 7412.
-
[29]
Jin, W. T.; Wang, H. X.; Wang, S. Y.; Dapper, C. H.; Li, X.; Newton, W. E.; Zhou, Z. H.; Cramer, S. P. Inorg. Chem. 2019, 58 (4), 2523.
-
[30]
Deng, L.; Wang, H.; Dapper, C. H.; Newton, W. E.; Shilov, S.; Wang, S. L.; Cramer, S. P.; Zhou, Z. H. Commun. Chem. 2020, 3, 145.
-
[31]
Chen, Q. L.; Wang, H. X.; Cramer, S. P.; Zhou, Z. H. Coord. Chem. Rev. 2024, 505, 215662.
-
[32]
Rehder, D. J. Inorg. Biochem. 2000, 80, 133.
-
[33]
Pessoa, J. C.; Garribba, E.; Santos, M. F.; Santos-Silva, T. Coord. Chem. Rev. 2015, 301, 49.
-
[34]
Harwood, C. S. Anu. Rev. Microbiol. 2020, 74, 247.
-
[35]
Sippel, D.; Einsle O. Nat. Chem. Biol. 2017, 13, 956.
-
[36]
Rohde, M.; Grunau, K.; Einsle, O. Angew. Chem. Int. Ed. 2020, 132, 23833.
-
[37]
Rohde, M.; Laun, K.; Zebger, I.; Stripp, S. T.; Einsle, O. Sci. Adv. 2021, 7, eabg4474.
-
[38]
Chen, C. Y.; Chen, M. L.; Wang, H. X.; Cramer, S. P.; Zhou, Z. H. J. Inorg. Biochem. 2014, 141, 114.
-
[1]
-
-
-
[1]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[2]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074
-
[3]
Yihui Song , Shangshang Qin , Kai Wu , Chengyun Jin , Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018
-
[4]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[5]
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
-
[6]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[7]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[8]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[9]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[10]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[11]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[12]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[13]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[14]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[15]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[16]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[17]
Jiantao Zai , Hongjin Chen , Xiao Wei , Li Zhang , Li Ma , Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023
-
[18]
Zongpei Zhang , Yanyang Li , Yanan Si , Kai Li , Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041
-
[19]
Xiaohang Qiu , Yang Liu , Fei Ding , Jie Han , Yijun Li . Construction of a Demonstration Center for Experimental Chemistry Education in the New Era. University Chemistry, 2024, 39(7): 26-31. doi: 10.12461/PKU.DXHX202404112
-
[20]
Junlin Yan , Changhao Wang , Quanguo Zhai , Chenghui Liu , Dong Xue . A New Construction Model and Practice of Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 64-68. doi: 10.12461/PKU.DXHX202405005
-
[1]
Metrics
- PDF Downloads(7)
- Abstract views(448)
- HTML views(62)