Citation: Geyang Song,  Dong Xue,  Gang Li. Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides[J]. University Chemistry, ;2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030 shu

Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides

  • Aniline compounds are important organic intermediates and basic chemical raw materials, widely applied in research fields such as pharmaceuticals, agrochemicals, dyes, and functional materials. The development of efficient and versatile synthesis of aniline derivatives is one of the research hotspots that have been attracting much attention. In the past few decades, the study of transition metal-catalyzed synthesis of aniline derivatives from aryl halides has attracted significant attention from chemists due to its advantages of broad substrate applicability, good functional group compatibility, and high reaction selectivity. This review summarizes the research progress in transition metal-catalyzed synthesis of aniline derivatives from aryl halides, including: (1) palladium-catalyzed synthesis of aniline derivatives from aryl halides; (2) copper-catalyzed synthesis of aniline derivatives from aryl halides; (3) nickel-catalyzed synthesis of aniline derivatives from aryl halides.
  • 加载中
    1. [1]

      (b) Lawrence, S. A. Amines: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, UK, 2004; p. 450.

    2. [2]

      (a) Weissermel, K.; Arpe, H.-J. Industrial Organic Chemistry; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; pp. I–XIX.

    3. [3]

      Schranck, J.; Tlili, A. ACS Catal. 2018, 8, 405.

    4. [4]

      (b) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.

    5. [5]

      (a) Bariwal, J.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 9283.

    6. [6]

      (c) Forero-Cortés, P. A.; Haydl, A. M. Org. Process Res. Dev. 2019, 23, 1478.

    7. [7]

      Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 10028.

    8. [8]

      (b) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.

    9. [9]

      Vo, G. D; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11049.

    10. [10]

    11. [11]

      (d) Cai, Q.; Zhou, W. Chin. J. Chem. 2020, 38, 879.

    12. [12]

      Green, R. A.; Hartwig, J. F. Org. Lett. 2014, 16, 4388.

    13. [13]

      (e) Yang, Q.; Zhao, Y.; Ma, D. Org. Process Res. Dev. 2022, 26, 1690.

    14. [14]

      Klinkenberg, J. L.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 11830.

    15. [15]

      (b) Gao, J.; Bhunia, S.; Wang, K.; Gan, L.; Xia, S.; Ma, D. Org. Lett. 2017, 19, 2809.

    16. [16]

      Surry, D. S.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 10354.

    17. [17]

      (b) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.

    18. [18]

      Cheung, C. W.; Surry, D. S.; Buchwald, S. L. Org. Lett. 2013, 15, 3734.

    19. [19]

      Schulz, T.; Torborg, C.; Enthaler, S.; Schäffner, B.; Dumrath, A.; Spannenberg, A.; Neumann, H.; Börner, A.; Beller, M. Chem. Eur. J. 2009, 15, 4528.

    20. [20]

      (c) Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; et al. Chem. Rev. 2022, 122, 1485.

    21. [21]

      (b) Song, G.; Yang, L.; Li, J.-S.; Tang, W.-J.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; Xue, D. Angew. Chem. Int. Ed, 2021, 60, 21536.

    22. [22]

      Dumrath, A.; Lübbe, C.; Neumann, H.; Jackstell, R.; Beller, M. Chem. Eur. J. 2011, 17, 9599.

    23. [23]

      (c) Song, G.; Nong, D.-Z.; Li, J.-S.; Li, G.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; Xue, D. J. Org. Chem. 2022, 87, 10285.

    24. [24]

      Lundgren, R. J.; Sappong-Kumankumah, A.; Stradiotto, M. Chem. Eur. J. 2010, 16, 1983.

    25. [25]

      Lundgren, R. J.; Peters, B. D.; Alsabeh, P. G.; Stradiotto, M. Angew. Chem. Int. Ed. 2010, 49, 4071.

    26. [26]

      (d) Song, G.; Li, Q.; Nong, D.-Z.; Song, J.; Li, G.; Wang, C.; Xiao, J.; Xue, D. Chem. Eur. J. 2023, 29, e202300458.

    27. [27]

      Alsabeh, P. G.; Lundgren, R. J.; McDonald, R.; Johansson Seechurn, C. C. C.; Colacot, T. J.; Stradiotto, M. Chem. Eur. J. 2013, 19, 2131.

    28. [28]

      Lombardi, C.; Day, J.; Chandrasoma, N.; Mitchell, D.; Rodriguez, M. J.; Farmer, J. L.; Organ, M. G. Organometallics 2017, 36, 251.

    29. [29]

      Lindley, J. Tetrahedron 1984, 40, 1433.

    30. [30]

      (a) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.

    31. [31]

      Lang, F.; Zewge, D.; Houpis, I. N.; Volante, R. P. Tetrahedron Lett. 2001, 42, 3251.

    32. [32]

      Kim, J.; Chang, S. Chem. Commun. 2008, 3052.

    33. [33]

      Xia, N.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48, 337.

    34. [34]

      Jiang, L.; Lu, X.; Zhang, H.; Jiang, Y.; Ma, D. J. Org. Chem. 2009, 74, 4542.

    35. [35]

      (a) Fan, M.; Zhou, W.; Jiang, Y.; Ma, D. Org. Lett. 2015, 17, 5934.

    36. [36]

      Wang, D.; Cai, Q.; Ding, K. Adv. Synth. Catal. 2009, 351, 1722.

    37. [37]

      Meng, F.; Zhu, X.; Li, Y.; Xie, J.; Wang, B.; Yao, J.; Wan, Y. Eur. J. Org. Chem. 2010, 6149.

    38. [38]

      Elmkaddem, M. K.; Fischmeister, C.; Thomas, C. M.; Renaud, J.-L. Chem. Commun. 2010, 46, 925.

    39. [39]

      Zeng, X.; Huang, W.; Qiu, Y.; Jiang, S. Org. Biomol. Chem. 2011, 9, 8224.

    40. [40]

      Quan, Z.; Xia, H.; Zhang, Z.; Da, Y.; Wang, X. Chin. J. Chem. 2013, 31, 501.

    41. [41]

      Wu, Z.; Jiang, Z.; Wu, D.; Xiang, H.; Zhou, X. Eur. J. Org. Chem. 2010, 1854.

    42. [42]

      Xu, H.; Wolf, C. Chem. Commun. 2009, 3035.

    43. [43]

      Wu, X.-F.; Darcel, C. Eur. J. Org. Chem. 2009, 4753.

    44. [44]

      Fantasia, S.; Windisch, J.; Scalone, M. Adv. Synth. Catal. 2013, 355, 627.

    45. [45]

      Borzenko, A.; Rotta-Loria, N. L.; MacQueen, P. M.; Lavoie, C. M.; McDonald, R.; Stradiotto, M. Angew. Chem. Int. Ed. 2015, 54, 3773.

    46. [46]

      Green R. A.; Hartwig, J. F. Angew. Chem. Int. Ed. 2015, 54, 3768.

    47. [47]

      Lavoie, C. M.; MacQueen, P. M.; Rotta-Loria, N. L.; Sawatzky, R. S.; Borzenko, A.; Chisholm, A J.; Hargreaves, B. K.V.; McDonald, R.; Ferguson, M. J.; Stradiotto, M. Nat. Commun. 2016, 7, 11073.

    48. [48]

      (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.

    49. [49]

      (a) Li, G.; Yang, L.; Liu, J.-J.; Zhang, W.; Cao, R.; Wang, C.; Zhang, Z.; Xiao, J.; Xue, D. Angew. Chem. Int. Ed, 2021,60, 5230.

    50. [50]

      Song, G.; Nong, D.-Z.; Li, Q.; Yan, Y.; Li, G.; Fan, J.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; et al. ACS Catal. 2022, 12, 15590.

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    7. [7]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    8. [8]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    9. [9]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    10. [10]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    11. [11]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    12. [12]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    18. [18]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    19. [19]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(3)
  • Abstract views(552)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return