Citation: Wei Fan,  Xuqing Qian,  Yuxuan Wang,  Jialu Yang,  Sunqiujun Zhang,  Xinning Wang,  Junxiao Han,  Chenglong Lu,  Dongju Zhang. Structure, Aromaticity, and Isomerization Reactions of Cyclooctetraene[J]. University Chemistry, ;2024, 39(1): 351-358. doi: 10.3866/PKU.DXHX202306006 shu

Structure, Aromaticity, and Isomerization Reactions of Cyclooctetraene

  • Cyclooctatetraene is a cyclic polyene composed of eight sp2 carbon atoms. Understanding its structure and properties involves the application of various fundamental chemical theories and concepts. This article guides undergraduate students to use computational chemistry methods to investigate the electronic structure, geometric configuration, aromaticity, and isomerization reactions of cyclooctatetraene, with the aim of helping students achieve the following learning objectives:1) understand the scientific concept that structure determines properties and properties respond to structure; 2) understand the limitation of the Hückel molecular orbital method (HMO) in dealing with 4n-type π-electron systems; 3) distinguish fundamental concepts such as aromaticity, antiaromaticity, and non-aromaticity and comprehend the Hückel's rule for determining the aromaticity of the ground state (singlet state) of a conjugated π-electron system, as well as the Baird's rule for determining the aromaticity of excited states (triplet state); and 4) clearly recognize that computational chemistry methods are essential tools for understanding the structure and properties of materials.
  • 加载中
    1. [1]

    2. [2]

      McMurry, J. Organic Chemistry, 8th ed.; Brooks/Cole: Belmont, USA, 2010; pp. 541−546.

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

      Hückel, E. Z. Elektrochem. Angew. Physik. Chem. 1937, 42, 752.

    8. [8]

      Baird, N. C. J. Am. Chem. Soc. 1972, 94, 4941.

    9. [9]

      Ham, N. S. Spectrochim. Acta 1962, 18, 775.

    10. [10]

      Willstätter, R.; Veraguth, H. Ber. Dtsch. Chem. Ges. 1905, 38, 1975.

    11. [11]

      Stinson, M.; Ezra, D.; Hess, W. M.; Sears, J.; Strobel, G. Plant Sci. 2003, 165, 913.

    12. [12]

      Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T. Justus Liebigs Ann. Chem. 1948, 560, 1.

    13. [13]

      Katz, T. J. J. Am. Chem. Soc. 1960, 82, 3784.

    14. [14]

      Li, L. F.; Lei, M.; Xie, Y. M.; Schaefer, H. F.; Chen, B.; Hoffmann, R. Proc. Natl. Acad. Sci. USA 2017, 114, 9803.

    15. [15]

      Kaufman, H. S.; Fankuchen, I.; Mark, H. J. Chem. Phys. 1947, 15, 414.

    16. [16]

      Kummli, D. S.; Lobsiger, S.; Frey, H. M.; Leutwyler, S.; Stanton, J. F. J. Phys. Chem. A 2008, 112, 9134.

    17. [17]

      Sokolov, A. Y.; Magers, D. B.; Wu, J. I.; Allen, W. D.; Schleyer, P. v. R.; Schaefer, H. F. J. Chem. Theory Comput. 2013, 9, 4436.

    18. [18]

      Andrés, J. L.; Castaño, O.; Morreale, A.; Palmeiro, R.; Gomperts, R. J. Chem. Phys. 1998, 108, 203.

    19. [19]

      Chang, J. L.; Cheng, M. Z.; Huang, Y. J. J. Phys. Chem. A 2020, 124, 3205.

    20. [20]

      Dennington, R. D.; Keith, T. A.; Millam, J. M. GaussView, Version 6.1; Semichem Inc.: Shawnee Mission, KS, USA, 2016.

    21. [21]

      Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.

    22. [22]

      Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.

    23. [23]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al.; Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013.

    24. [24]

      Zhang, D. J. J. Chem. Educ. 2023, accepted for publication.

    25. [25]

      Baird, N. C. J. Am. Chem. Soc. 1972, 94, 4941.

    26. [26]

      Jorner, K. Baird Aromaticity in Excited States and Open-Shell Ground States. In Aromaticity; Fernandez, I. Ed.; Elsevier: Amsterdam, the Netherlands, 2021; pp. 375–405.

    27. [27]

      Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H. J.; Hommes, N. J. R. v. E. J. Am. Chem. Soc. 1996, 118, 6317.

    28. [28]

      Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Org. Lett. 2006, 8, 863.

    29. [29]

      Klod, S.; Koch, A.; Kleinpeter, E. J. Chem. Soc., Perkin Trans. 2002, 2, 1506.

    30. [30]

      Garavelli, M.; Bernardi, F.; Cembran, A.; Castano, O.; Frutos, L. M.; Merchan, M.; Olivucci, M. J. Am. Chem. Soc. 2002, 124, 13770.

    31. [31]

      Huisgen, R.; Mietzsch, F. Angew. Chem., Int. Ed. 1964, 3, 83.

    32. [32]

      Hassenruck, K.; Martin, H. D.; Walsh, R. Chem. Rev. 1989, 89, 1125.

    33. [33]

      Zhang, L.; Wang, Y.; Yao, Z. J.; Wang, S. Z.; Yu, Z. X. J. Am. Chem. Soc. 2015, 137, 13290.

    34. [34]

      Zhang, P.; Yu, Z. X. J. Am. Chem. Soc. 2023, 145, 9634.

  • 加载中
    1. [1]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    2. [2]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    3. [3]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    7. [7]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    8. [8]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    9. [9]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    10. [10]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    14. [14]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    15. [15]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    16. [16]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    17. [17]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    18. [18]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    19. [19]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    20. [20]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

Metrics
  • PDF Downloads(8)
  • Abstract views(982)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return