Citation: Xueli Cheng,  Yanyun Zhao,  Feng Li,  Yongjuan Yang,  Jianmei Han. Visualizing the Descriptors of the Physical and Chemical Properties of Monocyclic B5N5 Using Multiwfn[J]. University Chemistry, ;2023, 38(11): 301-308. doi: 10.3866/PKU.DXHX202303079 shu

Visualizing the Descriptors of the Physical and Chemical Properties of Monocyclic B5N5 Using Multiwfn

  • Corresponding author: Xueli Cheng,  Feng Li, 
  • Received Date: 27 March 2023

  • Using Multiwfn, a free wavefunction analyzer, visualization of the descriptors of physical and chemical properties can greatly enrich the classroom-teaching contents, and will present the elegance of chemistry. In the current study, color-filled maps of localized-orbital locator (LOL) purely obtained through π electrons (LOL-π), electron localization function (ELF) color maps, and scanning tunnel microscope (STM) images were created based on the molecular orbitals of monocyclic B5N5. Additionally, molecular surface electrostatic potential, average local ionization energy (ALIE), and local electron affinity (LEA) were employed to visualize the reactive sites of B5N5. Interaction region indicator (IRI) and noncovalent interaction (NCI) analyses were performed and discussed to reveal the bonding and weak interactions in this material. The proposed study is a typical paragon for the usefulness of chemical software in facilitating the teaching of science in classrooms.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580.

    4. [4]

      Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14 (1), 33.

    5. [5]

      Legault, C. Y. CYLview 1.0b; Université de Sherbrooke:Sherbrooke, Quebec, Canada, 2009.

    6. [6]

      Portmann, S.; Lüthi, H. P. Chimia 2000, 54 (12), 766.

    7. [7]

    8. [8]

      Kaiser, K.; Scriven, L. M.; Schulz, F.; Gawel, P.; Gross, L.; Anderson, H. L. Science 2019, 365 (6459), 1299.

    9. [9]

      Zhang, D.; Xiong, Q.; Chang, K. Nanoscale Adv. 2020, 2 (10), 4421.

    10. [10]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.:Wallingford, CT, USA, 2013.

    11. [11]

      Cheng, X. Chem. Phys. 2021, 541, 111047.

    12. [12]

      Liu, Z.; Lu, T.; Chen, Q. Carbon 2020, 165, 468.

    13. [13]

      Cheng, X.; Zhang, X.; Zhao, Y.; Zhuo, L. Chem. Phys. Lett. 2023, 821, 140476.

    14. [14]

      Steinmann, S. N.; Mo, Y.; Corminboeuf, C. Phys. Chem. Chem. Phys. 2011, 13 (46), 20584.

    15. [15]

      Gonthier, J. F.; Steinmann, S. N.; Roch, L.; Ruggi, A.; Luisier, N.; Severin, K.; Corminboeuf, C. Chem. Commun. 2012, 48 (74), 9239.

    16. [16]

      Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92 (9), 5397.

    17. [17]

    18. [18]

      Tersoff, J.; Hamann, D. R. Phys. Rev. Lett. 1983, 50 (25), 1998.

    19. [19]

      Tersoff, J.; Hamann, D. R. Phys. Rev. B 1985, 31 (2), 805.

    20. [20]

    21. [21]

      Zhao, Y.; Cheng, X.; Nie, K.; Han, Y.; Li, J. Comput. Theor. Chem. 2021, 1203, 113329.

    22. [22]

      Cheng, X.; Li, F.; Zhao, Y.; Cheng, X.; Nie, K.; Han, Y.; Yang, Y. J. Phys. Org. Chem. 2022, 35 (12), e4420.

    23. [23]

    24. [24]

      Murray, J. S.; Politzer, P. WIREs Comput. Mol. Sci. 2017, 7 (6), e1326.

    25. [25]

      Suresh, C. H.; Remya, G. S.; Anjalikrishna, P. K. WIREs Comput. Mol. Sci. 2022, 12 (5), e1601.

    26. [26]

      Lu, T.; Chen, Q. Chem.-Methods 2021, 1 (5), 231.

    27. [27]

      Cheng, X.; Zhao, Y.; Liu, J.; Sun, J.; Miao, Y.; Ling, B. ChemistrySelect 2023, 8 (11), e202204696.

    28. [28]

      Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132 (18), 6498.

    29. [29]

      Lu, T.; Chen, Q. J. Comput. Chem. 2022, 43 (8), 539.

    30. [30]

  • 加载中
    1. [1]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    2. [2]

      Jinghan Xu Yang Wang Donghui Wei . Drawing Cross-Sectional Contour Maps of π Molecular Orbitals. University Chemistry, 2025, 40(3): 23-29. doi: 10.12461/PKU.DXHX202403023

    3. [3]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    4. [4]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    5. [5]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    6. [6]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    12. [12]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    13. [13]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    16. [16]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    17. [17]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    18. [18]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    20. [20]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

Metrics
  • PDF Downloads(6)
  • Abstract views(861)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return