Citation: Jingyuan He,  Zekai Wang,  Xianwei Qi,  Kaiyuan Chen,  Jiang Bian. Application and Prospect of Molecular Skeletal Editing in Drug Synthesis[J]. University Chemistry, ;2023, 38(10): 313-323. doi: 10.3866/PKU.DXHX202301033 shu

Application and Prospect of Molecular Skeletal Editing in Drug Synthesis

  • Corresponding author: Jiang Bian, bj@pku.edu.cn
  • Received Date: 26 January 2023
    Revised Date: 8 May 2023

  • Molecular editing, including peripheral and skeletal editing, is an area of interest in the field of organic synthesis. Typically, the peripheral editing of C―H bonds is conventionally used for molecular editing. By contrast, skeletal editing is a novel method, which has broader applications in total synthesis and drug development, with advantages of easy operation, high specificity, and simple synthetical routes. This review introduces two skeletal editing examples using common reactions. By comparisons with conventional methods, the applications of molecular editing in drug synthesis are revealed. Moreover, this review predicts the future applications of molecular editing by presenting some state-of-the-art developments in this field.
  • 加载中
    1. [1]

      Kennedy, S. H.; Dherange, B. D.; Berger, K. J.; Levin, M. D. Nature 2021, 593, 223.

    2. [2]

      Dherange, B. D.; Kelly, P. Q.; Liles, J. P.; Sigman, M. S.; Levin, M. D. J. Am. Chem. Soc. 2021, 143, 11337.

    3. [3]

      -499.

    4. [4]

      Woo, J.; Christian, A. H.; Burgess, S. A.; Yuan, J.; Mansoor, U. F.; Levin, M. D. Science 2022, 376, 527.

    5. [5]

      Reisenbauer, J. C.; Green, O.; Franchino, A.; Finkelstein, P.; Morandi, B. Science 2022, 377, 1104.

    6. [6]

      Qin, H.; Cai, W.; Wang, S.; Guo, T.; Li, G.; Lu, H. Angew. Chem. Int. Ed. 2021, 60, 20678.

    7. [7]

      Zippel, C.; Seibert, J.; Bräse, S. Angew. Chem. Int. Ed. 2021, 60, 19522.

    8. [8]

      Lyu, H.; Kevlishvili, I.; Yu, X.; Liu, P.; Dong, G. Science 2021, 372, 175.

    9. [9]

      Patel, S. C.; Burns, N. Z. J. Am. Chem. Soc. 2022, 144, 17797.

    10. [10]

      Hui, C.; Antonchick, A. P. Bioorg. Med. Chem. 2022, 67, 116817.

    11. [11]

      Ma, D.; Martin, B. S.; Gallagher, K. S.; Saito, T.; Dai, M. J. Am. Chem. Soc. 2021, 143, 16383.

    12. [12]

      Yuan, P.; Gerlinger, C. K. G.; Herberger, J.; Gaich, T. J. Am. Chem. Soc. 2021, 143, 11934.

    13. [13]

      Fu, C.; Zhang, Y.; Xuan, J.; Zhu, C.; Wang, B.; Ding, H. Org. Lett. 2014, 16, 3376.

    14. [14]

      Fischer, D. F.; Sarpong, R. J. Am. Chem. Soc. 2010, 132, 5926.

    15. [15]

    16. [16]

      Kröhnk, F. Angew. Chem. Int. Ed. 1963, 2, 225.

    17. [17]

      Yuan, C.; Chang, C.; Siegel, D. J. Org. Chem. 2013, 78, 5647.

    18. [18]

      Yuan, C.; Chang, C.-T.; Axelrod, A.; Siegel, D. J. Am. Chem. Soc. 2010, 132, 5924.

    19. [19]

      Nakamura, M.; Chi, Y.; Yan, W.; Yonezawa, A.; Nakasugi, Y.; Yoshizawa, T.; Hashimoto, F.; Kinjo, J.; Nohara, T.; Sakurada, S.Planta Med. 2001, 67, 114.

    20. [20]

      Gutekunst, W. R.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 19076.

    21. [21]

      Hu, J.; Feng, L.; Wang, L.; Xie, Z.; Tang, Y.; Li, X. J. Am. Chem. Soc. 2016, 138, 13151.

    22. [22]

      Pachaly, B.; West, R. Angew. Chem. Int. Ed. 1984, 23, 454.

    23. [23]

      Jurczyk, J.; Woo, J.; Kim, S. F.; Dherange, B. D.; Sarpong, R.; Levin, M. D. Nat. Synth. 2022, 1, 352.

    24. [24]

      Golding, B. T. The Story of Rucaparib (Rubraca). In Successful Drug Discovery; Fischer, J., Klein, C., Childers, W. E., Eds.; Wiley-VCH:Weinheim, Germany, 2019; pp. 201-223.

    25. [25]

      Fout, A. R.; Bailey, B. C.; Tomaszewski, J.; Mindiola, D. J. J. Am. Chem. Soc. 2007, 129, 12640.

    26. [26]

      Morofuji, T.; Inagawa, K.; Kano, N. Org. Lett. 2021, 23, 6126.

    27. [27]

      Holovach, S.; Melnykov, K. P.; Poroshyn, I.; Iminov, R. T.; Dudenko, D.; Kondratov, I.; Levin, M.; Grygorenko, O. O. Chem. Eur. J. 2023, 29, e202203470.

    28. [28]

      Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.

  • 加载中
    1. [1]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    2. [2]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    3. [3]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    4. [4]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    5. [5]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    6. [6]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    7. [7]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    8. [8]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    9. [9]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    10. [10]

      Peihong Fan Hongxiang Lou . 研究生高等天然药物化学课程的教学改革探索——导学互促式混合课堂教学与自主学习能力培养. University Chemistry, 2025, 40(6): 16-21. doi: 10.12461/PKU.DXHX202407078

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    17. [17]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    18. [18]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    19. [19]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    20. [20]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

Metrics
  • PDF Downloads(14)
  • Abstract views(844)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return