Citation: Yuxiang Zhou,  Yanghaoyu Tan,  Zirui Ye,  Mingbang Wang,  Jiang Bian. A Brief Discussion of Molecular Editing Technology: The Building Block Game on Atomic Scale[J]. University Chemistry, ;2023, 38(11): 323-336. doi: 10.3866/PKU.DXHX202301032 shu

A Brief Discussion of Molecular Editing Technology: The Building Block Game on Atomic Scale

  • Corresponding author: Jiang Bian, bj@pku.edu.cn
  • Received Date: 26 January 2023

  • With the organic synthetic chemistry developed in recent years, molecular editing technology has gradually demonstrated significant advantages in both synthetic chemistry and retrosynthetic analysis and plays an important part in the decoration and the optimization of drugs. We introduce some of the reactions about molecular editing, such as skeletal rearrangement and C-H functionalization, and the prospect of molecular editing in the future is discussed in the final part.
  • 加载中
    1. [1]

      Lam, N. Y. S.; Wu, K.; Yu, J.-Q. Angew. Chem. Int. Ed. 2020, 60, 15767.

    2. [2]

      Ramadoss, B.; Jin, Y.-S.; Asako, S.; Ilies, L. Science 2022, 375, 658.

    3. [3]

      Leow, D.-S.; Li, G.; Mei, T.-S.; Yu, J.-Q. Nature 2012, 486, 518.

    4. [4]

      Chen, G.; Gong, W.; Zhuang, Z.; Andrä, M. S.; Chen, Y.-Q.; Hong, X.; Yang, Y.-F.; Liu, T.; Houk, K. N.; Yu, J.-Q. Science 2016, 353, 1023.

    5. [5]

      (a) Paquin, J.-F.; Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 10850. (b) Paquin, J.-F.; Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. Org. Lett. 2005, 7, 3821.

    6. [6]

      Fan, Z.-L.; Chen, X.-Y.; Tanaka, K.; Park, H. S.; Lam, N. Y. S.; Wong, J. J.; Houk, K. N.; Yu, J.-Q. Nature 2022, 610, 87.

    7. [7]

      Shu, C.; Noble, A.; Aggarwal, V. K. Nature 2020, 586, 714.

    8. [8]

      Fawcett, A.; Pradeilles, J.; Wang, Y.-H.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283.

    9. [9]

      Oeschger, R.; Su, B.; Yu, I.; Ehinger, C.; Romero, E.; He, S.; Hartwig, J. Science 2020, 368, 736.

    10. [10]

      Ohmura, T.; Torigoe, T.; Suginome, M. Organicmetallics 2013, 32, 6170.

    11. [11]

      Jacobson, R. M.; Raths, R. A. J. Org. Chem. 1979, 44, 4013.

    12. [12]

      O'Malley, S. J.; Tan, K.-L.; Watzke, A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 13496.

    13. [13]

      Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 5767.

    14. [14]

      Kennedy, S. H.; Dherange, B. D.; Berger, K. J.; Levin, M. D. Nature 2021, 593, 223.

    15. [15]

      Kennedy, S. H.; Dherange, B. D.; Berger, K. J.; Levin, M. D. Nature 2022, 608, E11.

    16. [16]

      Hui, C.; Brieger, L; Strohmann, C.; Antonchick, A. P. J. Am. Chem. Soc. 2021, 143, 18864.

    17. [17]

      Qin, H.-T.; Cai, W.-S.; Wang, S.; Guo, T.; Li, G.-G.; Lu, H.-J. Angew. Chem. Int. Ed. 2021, 60, 20678.

    18. [18]

      Lemal, D. M; Rave, T. W. J. Am. Chem. Soc. 1965, 87, 293.

    19. [19]

      Hinman, R. L.; Hamm, K. L. J. Org. Chem. 1959, 81, 3294.

    20. [20]

      Im, J. K.; Jeong, L.; Yang, B..; Moon, H.; Choi, J.-H.; Chung, W.-J. Synthesis 2021, 53, 1760.

    21. [21]

      Somei, M.; Kurizuka, Y. Chem. Lett. 1979, 8, 127.

    22. [22]

      Reisenbauer, J. C.; Green, O.; Franchino, A.; Finkelstein, P.; Morandi, B. Science 2022, 377, 1104.

    23. [23]

      Liu, S.; Cheng, X. Nat. Commun. 2022, 13, 425.

    24. [24]

      Woo, J.; Christian, A. H.; Burgess, S. A.; Jiang, Y.; Mansoor, U. F.; Levin, M. D. Science 2022, 376, 527.

    25. [25]

      Hurlow, E. E.; Lin, J. B.; Dweck, M. J.; Nuryyeva, S.; Feng, Z.-G.; Allred, T. K.; Houk, K. N.; Harran, P. G. J. Am. Chem. Soc. 2020, 142, 20717.

    26. [26]

      Dherange, B. D.; Kelly, P. Q.; Liles, J. P.; Sigman, M. S.; Levin, M. D. J. Am. Chem. Soc. 2021, 143, 11337.

    27. [27]

      Baeyer, A.; Villiger, V. Chem. Ges. Berlin 1900, 33, 2488.

    28. [28]

      Dakin, H. D. J. Am. Chem. Soc. 1909, 42, 477.

    29. [29]

      Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.

    30. [30]

      Cao, Z.-C.; Shi, Z.-J. J. Am. Chem. Soc.2017, 139, 6546.

    31. [31]

      Jurczyk, J.; Lux, M. C.; Adpressa, D.; Kim, S. F.; Lam, Y.-H.; Yeung, C. S.; Sarpong, R. Science 2021, 373, 1004.

    32. [32]

      Halford, B. Chem. Eng. News 2021, 99, 41.

  • 加载中
    1. [1]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    2. [2]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    3. [3]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    6. [6]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    7. [7]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    8. [8]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    14. [14]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    15. [15]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

Metrics
  • PDF Downloads(2)
  • Abstract views(675)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return