Citation: Dan Sun,  Xinyu Liu,  Na Chen,  Hao Wang,  You Huang,  Haiyan Wang. The Growth Behavior and Influencing Factors of Zinc Dendrite in Zinc Electroplating Process[J]. University Chemistry, ;2023, 38(4): 68-77. doi: 10.3866/PKU.DXHX202211076 shu

The Growth Behavior and Influencing Factors of Zinc Dendrite in Zinc Electroplating Process

  • Electroplating is an important part of electrochemical system. In order to broaden the knowledge structure, and cultivate innovation consciousness and scientific literacy of students, zinc electroplating is introduced into the laboratory teaching of applied electrochemistry major. In this experiment, the cause of the zinc dendrites formation in the process of zinc electroplating is analyzed theoretically, and then two corresponding strategies of eliminating surface heterogeneity and adding cationic additives are proposed to inhibit the production of zinc dendrites. In order to deepen the understanding of zinc plating process, we set up an in situ optical microscope to directly observe the change of zinc deposition behavior. This experiment deeply integrates the scientific thinking and innovative ideas of frontier research, guides students to jump out of the textbook framework, stimulates students’ interest in scientific research, and therefore contributes to the cultivation of students’ scientific thinking ability.
  • 加载中
    1. [1]

    2. [2]

      Lu, W. J.; Xie, C. X.; Zhang, H. M.; Li, X. F. ChemSusChem 2018, 11 (23), 3996.

    3. [3]

      Liao, M.; Wang, J. W.; Ye, L.; Sun, H.; Wen, Y. Z.; Wang, C.; Sun, X. M.; Wang, B. J.; Peng, H. S. Angew. Chem. Int. Ed. 2020, 132 (6), 2293.

    4. [4]

      Deng, S. Z.; Yuan, Z. S.; Tie, Z. W.; Wang, C. D.; Song, L.; Niu, Z. Q. Angew. Chem. Int. Ed. 2020, 59 (49), 22002.

    5. [5]

      Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Angew. Chem. Int. Ed. 2012, 124 (4), 957.

    6. [6]

      Yang, Z. F.; Zhang, Q.; Xie, C. L.; Li, Y. H.; Li, W. B.; Wu, T. Q.; Tang, Y. G.; Wang, H. Y. Energy Storage Mater. 2022, 47, 319.

    7. [7]

      Li, Y. H.; Wu, P. F.; Zhong, W.; Xie, C. L.; Xie, Y. L.; Zhang, Q.; Sun, D.; Tang, Y. G.; Wang, H. Y. Energy Environ. Sci. 2021, 14 (10), 5563.

    8. [8]

      Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Angew. Chem. Int. Ed. 2019, 131 (44), 15988.

    9. [9]

      Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. Science 2019, 366 (6465), 645.

    10. [10]

      Bard, A. J.; Faulkner, L. R. Methods 2001, 2 (482), 580.

    11. [11]

      Lide, D. R. CRC Handbook of Chemistry and Physics, 85th ed.; CRC Press:Boca Raton, FL, USA, 2004; pp. 8-33.

    12. [12]

      Bouchaud, B.; Balmain, J.; Bonnet, G.; Pedraza, F. J. Rare Earths 2012, 30 (6), 559.

    13. [13]

      Plimpton, S. J.; Lawton, W. E. Phys. Rev. 1936, 50 (11), 1066.

    14. [14]

      Henry, M.; Jolivet, J. P.; Livage, J. Aqueous Chemistry of Metal Cations:Hydrolysis, Condensation and Complexation. In Chemistry, Spectroscopy and Applications of Sol-Gel Glasses; Reisfeld, R., Jørgensen, C. K. Eds.; Springer:Heidelberg, German, 1992; pp. 153-206.

    15. [15]

      Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K; Guo, Z. P.; Qiao, S. Z. Angew. Chem. Int. Ed. 2021, 60 (13), 7366.

    16. [16]

      Xie, F. X.; Li, H.; Wang, X. S.; Zhi, X.; Chao, D. L.; Davey, K.; Qiao, S. H. Adv. Energy Mater. 2021, 11 (9), 2003419.

    17. [17]

      Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y. Adv. Energy Mater. 2018, 8 (25), 1801090.

    18. [18]

      Liang, P. C.; Yi, J.; Liu, X. Y.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Adv. Funct. Mater. 2020, 30 (13), 1908528.

    19. [19]

      Schultze, J. W.; Hassel, A. W.; Bard, A. J.; Stratmann, M.; Frankel, G. S. Encyclopedia of Electrochemistry. Wiley-VCH:Weinheim, Germany, 2003; pp. 216-235.

    20. [20]

      Lai, Y. Q.; Liu, F. Y.; Li, J.; Zhang, Z. A.; Liu, Y. X. J. Electroanal. Chem. 2010, 639 (1), 187.

  • 加载中
    1. [1]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    2. [2]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    3. [3]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    5. [5]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    11. [11]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    12. [12]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    13. [13]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    14. [14]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    15. [15]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    16. [16]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    17. [17]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    18. [18]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    19. [19]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(20)
  • Abstract views(1143)
  • HTML views(177)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return