Synergistic Teaching Methodology for Theoretical and Experimental Courses in Physical Chemistry
- Corresponding author: Jianaer Tuerxun, hozejanar@163.com
Citation:
Jianaer Tuerxun, Jingjing Wang, Guangming D. Synergistic Teaching Methodology for Theoretical and Experimental Courses in Physical Chemistry[J]. University Chemistry,
;2023, 38(1): 22-28.
doi:
10.3866/PKU.DXHX202202010
Liping Guo , Hongmei Wang , Li Song , Mengli Li , Haiyang Guo . Reform and Practice of Exercise Lecture in Physical Chemistry Based on the Project-Driven Learning. University Chemistry, 2025, 40(7): 62-70. doi: 10.12461/PKU.DXHX202409102
Xu Wang , Bowei Chen . Project-based Integrated Teaching Models Applied to the All-English Advanced Analytical Chemistry Course. University Chemistry, 2025, 40(10): 276-281. doi: 10.12461/PKU.DXHX202411011
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Xu Liu , Chengfang Liu , Jie Huang , Xiangchun Li , Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021
Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080
Meirong Cui , Mo Xie , Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015
Rong Zhang , Yufang Pan , Sanlai Luo , Dan Wang . Exploration and Practice of Teaching Reform in Physical Chemistry for Pharmacy Majors. University Chemistry, 2025, 40(4): 166-173. doi: 10.12461/PKU.DXHX202406101
Changhao Wang , Jieting Qin , Ying Zhang , Hongtao Bian , Jiani Ma , Xin Bo , Yashao Chen . SPOC平台支撑的物理化学教学实践研究. University Chemistry, 2025, 40(8): 38-44. doi: 10.12461/PKU.DXHX202410001
Yuanyuan Cheng , Di Zhao , Zhicheng Zhang . Practical Exploration of AI-Enabled Rain Classroom in Blended Teaching of Physical Chemistry. University Chemistry, 2025, 40(9): 196-205. doi: 10.12461/PKU.DXHX202503029
Wen Zhou , Hui Zhou , Chen Xie , Quli Fan . Exploration of a Dual-Line P-BOPPPS-E Teaching Approach Guided by Curriculum-Based Ideological and Political Education in Physical Chemistry. University Chemistry, 2025, 40(11): 92-99. doi: 10.12461/PKU.DXHX202412056
Wenhao Dong , Qin Ma , Xiaocan Wu . Large Unit Teaching Design in Physical Chemistry from the Perspective of Curriculum Ideological and Political Educaiton: A Case of the “Coal-to-Liquids Project in Ningxia”. University Chemistry, 2025, 40(11): 134-140. doi: 10.12461/PKU.DXHX202501017
Geshan Zhang , Haodong Tang , Zongjian Liu , Feng Feng . Application of the BOPPPS Effective Teaching Model in Bilingual Physical Chemistry Instruction: A Case on Colligative Properties of Dilute Solutions. University Chemistry, 2025, 40(11): 376-381. doi: 10.12461/PKU.DXHX202412127
Tongqi Ye , Qi Wang , Yuewen Ye , Yanqing Wang , Hongyang Zhou , Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116
Hongmei Zhao , Ziqiang Lu , Song Li , Xingyu Li , Chengting Zi , Xingli Fan , Xiangdong Qin . Exploration and Practice of Physical Chemistry Teaching under the Guidance of Course Ideological and Political Education. University Chemistry, 2024, 39(3): 210-217. doi: 10.3866/PKU.DXHX202309006
Congyi Wu . Advice for Young Teachers to Promote Teaching Level of Physical Chemistry. University Chemistry, 2024, 39(11): 15-19. doi: 10.3866/PKU.DXHX202402054
Qin He , Zhansheng Wang , Zichao Xiao , Xinle Liu . Application of Project-based Teaching in Physical Chemistry for Materials Chemistry Majors: A Case Study of p-V Diagram Construction. University Chemistry, 2025, 40(10): 288-294. doi: 10.12461/PKU.DXHX202412022
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
Chang Guo , Haipeng Yang , Hui Fang , Yingguo Zhao , Yating Li . 基于深度学习的物理化学课程DOK教学实践初探——以弯曲液面附加压力和蒸气压教学为例. University Chemistry, 2025, 40(6): 28-36. doi: 10.12461/PKU.DXHX202408049
Yanling Luo , Xuejie Qi , Rui Shen , Xuling Peng , Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075