Citation:
Zhanhua Ma, Yuezhan Du, Jun Li, Lanyi Sun. Teaching Reform and Practice of Advanced Separation Engineering under the Background of Emerging Engineering Education[J]. University Chemistry,
;2020, 35(10): 134-140.
doi:
10.3866/PKU.DXHX202008010
-
Facing the demand of strengthening the collaborative innovation ability of postgraduates under the background of emerging engineering education, the authors based on many years of teaching and scientific research experience carry out a series of teaching reforms on the teaching content, teaching methods, teaching means and assessment methods for the advanced separation engineering course. The project case base is established, case teaching and team cooperation are adopted to integrate multi-field professional knowledge and the latest scientific research achievements. Professional software is used to solve complex engineering problems, and the manual calculation and software calculation exercises are combined to strengthen the understanding and application of theoretical knowledge. The diversified assessment mode is taken to improve the study enthusiasm and autonomous learning ability. The practice shows that the teaching reforms and implementation of this course obviously improve the teaching effect, which is of great significance to the cultivation of postgraduates' comprehensive engineering ability, team communication and innovative thinking ability.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[1]
-
-
-
[1]
Maiyong Zhu , Shuping Wu . 新工科背景下无机化学课程思政教学初探. University Chemistry, 2025, 40(6): 101-110. doi: 10.12461/PKU.DXHX202409116
-
[2]
Bing Yuan , Fengli Yu , Congxia Xie . Teaching Cases Design of Catalysis Courses for Emerging Engineering Education. University Chemistry, 2024, 39(3): 191-198. doi: 10.3866/PKU.DXHX202309032
-
[3]
Yangwu Fu , Chuanbo Hu , Shuhong Chen . Teaching Reform and Practice of Physical Chemistry in Local Universities under the Background of Emerging Engineering Education. University Chemistry, 2025, 40(3): 237-244. doi: 10.12461/PKU.DXHX202406040
-
[4]
Hongxia Yan , Weixu Feng , Junyan Yao , Wei Tian , Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059
-
[5]
Sijiang Hu , Hongqiang Wang , Jiming Peng , Fenghua Zheng , Qichang Pan , Kui Liu , Qingyu Li . Ideological and Political Education Practice of the Comprehensive Applied Chemistry Laboratory for Emerging Engineering Education. University Chemistry, 2024, 39(2): 214-220. doi: 10.3866/PKU.DXHX202307019
-
[6]
Haiyun Shen , Yutong Liu , Wenge Jiang , Qiuhua Yang . 新工科背景下大学化学课程创新与实践. University Chemistry, 2025, 40(6): 77-84. doi: 10.12461/PKU.DXHX202405169
-
[7]
Liqiang Lu , Qin Shuai , Xike Tian , Chenggang Zhou , Guo'e Cheng , Bo han , Yulun Nie , Hongtao Zheng , Lei Ouyang . Exploration and Practice of Deep Integration of Production and Education in Applied Chemistry Major under the Background of Emerging Engineering Education. University Chemistry, 2024, 39(3): 138-142. doi: 10.3866/PKU.DXHX202309015
-
[8]
Lijun Zhou , Dongmei Wang , Jiameng Wang , Tongjie Yao , Mei Qi , Yin Kong , Yan Song . Teaching Case Design of “Degradation and Aging” as an Ideological and Political Demonstration Course. University Chemistry, 2025, 40(4): 80-86. doi: 10.12461/PKU.DXHX202405113
-
[9]
Yan Qi , Yueqin Yu , Weisi Guo , Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021
-
[10]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[11]
Fuxian Wan , Ying Li , Yuanhong Zhang , Shuhua Zhu , Jing Xu , Yanfang Wang , Lili Zhang . Exploration and Practice of Teaching in Agricultural Characteristic Organic Chemistry Course. University Chemistry, 2024, 39(2): 298-306. doi: 10.3866/PKU.DXHX202308041
-
[12]
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
-
[13]
Xinghai Liu , Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100
-
[14]
Xiaoxuan Yu , Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200
-
[15]
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
-
[16]
Qiong Luo , Zhiguang Xu , Xuan Xu , Ganquan Wang , Bin Peng . Exploration of Innovative Teaching in Structural Chemistry Course under the Emerging Engineering Education Model. University Chemistry, 2025, 40(4): 200-207. doi: 10.12461/PKU.DXHX202407016
-
[17]
Weifang Liu , Jidong Yang , Xiaowan Zeng , Liqiu Mao , Dulin Yin , Xiangping Chen , Lishan Yang . 新工科背景下的本科生“电池材料”课程思政建设及工程实践育人探索. University Chemistry, 2025, 40(6): 93-100. doi: 10.12461/PKU.DXHX202407036
-
[18]
Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043
-
[19]
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007
-
[20]
Guodong Xu , Chengcai Sheng , Xiaomeng Zhao , Tuojiang Zhang , Zongtang Liu , Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(1683)
- HTML views(231)