Citation:
Yurong Zhang, Sen Lin, Yaofeng Yuan. Cultivating Students’ Innovative Thinking in Classroom Teaching of Inorganic Chemistry[J]. University Chemistry,
;2020, 35(8): 13-16.
doi:
10.3866/PKU.DXHX201909041
-
Based on the experience and students’ characteristics in teaching inorganic chemistry, this paper takes the electrochemical potential window of water, the development history of coordination chemistry and the determination of aluminum ion concentration as examples to discuss the effects of scientific research, chemistry history and experiments on improving classroom teaching and students’ innovative thinking.
-
Keywords:
- Inorganic chemistry,
- Classroom teaching,
- Innovative thinking
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[1]
-
-
-
[1]
Juan Hou , Chen Zhou , Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023
-
[2]
Zhusheng Huang , Wei Xue , Yongzheng Chang , Lianhui Wang , Zhimin Luo . Teaching Reform in Physical Chemistry Experiments: Cultivating Students’ Innovation and Practical Skills. University Chemistry, 2025, 40(10): 10-16. doi: 10.12461/PKU.DXHX202411019
-
[3]
Gonglan Ye , Xia Yin , Feng Xu , Peng Yang , Yingpeng Wu , Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071
-
[4]
Fangdong Hu , Xiaolei Jiang . Research and Practice of the “Integration of Theory and Practice Drives Innovation” Teaching Mode in Inorganic Chemistry under the Background of “Four New” Construction. University Chemistry, 2024, 39(11): 1-8. doi: 10.3866/PKU.DXHX202402013
-
[5]
Xia Zhang , Xiaoguang Sang , Jinxia Wang , Hao Meng . Problem-Driven Inorganic Chemistry Course Teaching Practice Integrating Industry,Academia,and Research. University Chemistry, 2024, 39(10): 369-376. doi: 10.12461/PKU.DXHX202310027
-
[6]
Maiyong Zhu , Shuping Wu . 新工科背景下无机化学课程思政教学初探. University Chemistry, 2025, 40(6): 101-110. doi: 10.12461/PKU.DXHX202409116
-
[7]
Xianyong Lu , Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037
-
[8]
Liping Cheng , Lin Lin , Xiuzhen Xiao . “AI-Empowered” Teaching Reform and Exploration in Higher Education: A Case Study of Inorganic Chemistry Course. University Chemistry, 2025, 40(9): 264-272. doi: 10.12461/PKU.DXHX202501006
-
[9]
Huan Zhang , Guoqing Zhong , Qiying Jiang , Wenyuan Hu , Dingming Yang , Juan shen , Yatang Dai , Hongbo Li . Development and Practice of the “Five Rings and One Heart” Teaching Model in Inorganic Chemistry. University Chemistry, 2025, 40(11): 42-51. doi: 10.12461/PKU.DXHX202412076
-
[10]
Weigang Zhu , Xiaofei Ma , Yun Tian , Huaji Liu , Fanli Lu , Yalu Ma . 基于知识图谱的“无机化学与化学分析”课程信息化教学资源构建与应用研究. University Chemistry, 2025, 40(6): 9-15. doi: 10.12461/PKU.DXHX202408113
-
[11]
Haiyang Guo , Longfeng Zhu , Wei Zhong , Lianwen Zhu , Lei Li . Practice and Exploration of English-Teaching for Inorganic Chemistry in Regional Universities. University Chemistry, 2025, 40(10): 54-62. doi: 10.12461/PKU.DXHX202411016
-
[12]
Ling Li , Guocheng Wang . 知识图谱与AI助教在无机化学混合式教学中的初步探索——以“沉淀溶解平衡”的教学为例. University Chemistry, 2025, 40(6): 1-8. doi: 10.12461/PKU.DXHX202407063
-
[13]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[14]
Qin Kuang , Lansun Zheng , Yaxian Zhu . Overall Design of the Inorganic Chemistry Course for the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 14-21. doi: 10.12461/PKU.DXHX202408071
-
[15]
Zhuoxi Li , Jieshu Wei , Yanqin Cheng . Practice of Integrating Ideological and Political Education into Inorganic Chemistry Curriculum. University Chemistry, 2024, 39(2): 255-262. doi: 10.3866/PKU.DXHX202308084
-
[16]
Yalu Ma , Yun Tian , Xiaofei Ma . DeepSeek Large Model: Implications for Inorganic Chemistry Teaching and Learning. University Chemistry, 2025, 40(9): 171-177. doi: 10.12461/PKU.DXHX202502109
-
[17]
Minwei Xie . Integrating Ideological and Political Education into Inorganic Chemistry: a Case on “Weak Acid Dissociation Equilibrium” in Environmental Science and Engineering. University Chemistry, 2025, 40(11): 24-30. doi: 10.12461/PKU.DXHX202412143
-
[18]
Zhaoyang Li , Haiyan Zhao , Yali Zhang , Yuan Zhang , Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131
-
[19]
Biaolin Yin , Yuanfu Deng , Dongen Lin . Exploration and Practice of Integrating Ideological and Political Education and Innovative Thinking into “Organic Chemistry” Teaching. University Chemistry, 2024, 39(2): 286-291. doi: 10.3866/PKU.DXHX202308026
-
[20]
Linfeng Zhai , Hualin Wang , Yu Liu , Guanglong Qin . Exploration and Practice on Integrating Ideological and Political Education into the Experiment of the Preparation and Performance Measurement of Polyferric Sulfate. University Chemistry, 2025, 40(9): 354-360. doi: 10.12461/PKU.DXHX202410086
-
[1]
Metrics
- PDF Downloads(6)
- Abstract views(511)
- HTML views(29)
Login In
DownLoad: