Citation: CHEN Ming,  JIN Xiaoning,  MA Xiaofei,  WANG Yong. Click preparation and application of chiral stationary phase based on intrinsic recognition ability of cyclodextrin[J]. Chinese Journal of Chromatography, ;2020, 38(11): 1270-1280. doi: 10.3724/SP.J.1123.2020.02011 shu

Click preparation and application of chiral stationary phase based on intrinsic recognition ability of cyclodextrin

  • Corresponding author: WANG Yong, wangyongtju@tju.edu.cn
  • Received Date: 18 February 2020

    Fund Project: National Natural Science Foundation of China (Nos. 21922409, 21976131, 21575100)

  • Most of the studies on cyclodextrin (CD)-based chiral stationary phase (CSP) have focused on the functional derivatization of CD or the bridging arms to introduce more interaction sites and thus improve the chiral resolution ability. At present, there are only a few reports on CSP that can reflect the intrinsic recognition ability of natural CD. In this study, a mono(6-mercapto-6-deoxy)-β-CD CSP (CSP1) with a clear and controllable structure was synthesized by the "thiol-ene" click reaction. CSP1 retained the intrinsic structure of natural CD to the maximum extent, and the bridge arm had no recognition site. The results of 13C solid-state nuclear magnetic resonance (SSNMR) and Fourier transform infrared (FTIR) analyses confirmed the successful preparation of CSP1. Elemental analysis results showed that compared with double-bond functionalized silica, the percentages of C, H, and N in CSP1 increased, and the calculated CD loading of CSP1 was 0.82 μmol/m2. Reversed-phase high performance liquid chromatography was performed for the chiral resolution of more than 50 chiral enantiomers, including isoxazoline, chiral lactide, chiral ketone, flavone, and dansyl amino acid. This fully demonstrated the intrinsic chiral recognition ability of natural CD, and the results showed that the intrinsic recognition ability of cyclodextrin was more conducive to the separation of Ph-Ph samples containing two hydrophobic benzene ring groups in the isoxazoline samples. For the Ph-Py and Ph-OPr samples, the separation effect was not satisfactory. The separation results for the Ph-Py samples were not ideal because the outer hydroxyl group of cyclodextrin could form a hydrogen bond with the pyridine nitrogen, thus hindering the inclusion and the separation effect. This eventually led to poor separation of the enantiomers. While the pyrrolidone group in the Ph-OPr sample could also form a good inclusion complex with cyclodextrin, its higher polarity weakened the inclusion effect compared to that for benzene rings, thus leading to poor chirality separation results. For chiral lactides, the intrinsic recognition ability of CD was good only for the separation of some samples. In the separation of chiral ketones, large steric hindrance effect inhibited the intrinsic recognition ability of CD, and the separation effect of such samples on CSP1 was not ideal. External functional groups were required in some cases to further regulate the chiral recognition performance. The molecular structure of dansyl amino acids played an important role in the separation effect, in addition to the intrinsic recognition ability of CD. The number of side chains in the substituent also affected the quality of separation. Lengthening the side chain or increasing the hydrophobicity could effectively improve the separation efficiency. The separation effect of flavanone samples on CSP1 was ordinary. The substituent positions also affected the separation effect. In order to further explore the intrinsic recognition ability of CD, the functional triazole-bridged CD-CSP (CSP2) and imidazole-bridged CD-CSP (CSP3) (the surface CD loadings of CSP2 and CSP3 were 0.51 μmol/m2 and 0.46 μmol/m2, respectively) prepared earlier were selected and compared under the same chromatographic conditions. The results showed that the separation of the sample was related not only to the structure of the chiral medium but also to the structure of the sample molecules. Functional modification of the bridge arm could improve the selectivity of some enantiomers, but would also cause partial loss of the intrinsic chiral recognition ability of CD. For samples with the intrinsic recognition ability of CD to facilitate separation, no functional group had to be added to the bridge arm when designing a chiral medium. This study provides a useful reference for the design of CD-based CSPs.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

  • 加载中
    1. [1]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    2. [2]

      Tong Wang Liangyu Hu Shiqi Chen Xinqiang Fu Rui Wang Kun Li Shuangyan Huan . Determination of Benzenediol Isomers in Cosmetics Using High-Performance Liquid Chromatography Empowered by “Mathematical Separation”. University Chemistry, 2026, 41(1): 9-19. doi: 10.12461/PKU.DXHX202503128

    3. [3]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    4. [4]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    5. [5]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    6. [6]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    7. [7]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    8. [8]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    15. [15]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    16. [16]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    17. [17]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    20. [20]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

Metrics
  • PDF Downloads(10)
  • Abstract views(1026)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return