Citation: ZHOU Sijie, YANG Zeliang, DONG Zihe, ZHOU Mingda, ZENG Dongming. Construction of virtual simulation system of gas chromatograph based on Unity 3D[J]. Chinese Journal of Chromatography, ;2016, 34(6): 621-624. doi: 10.3724/SP.J.1123.2016.01029 shu

Construction of virtual simulation system of gas chromatograph based on Unity 3D

  • Corresponding author: DONG Zihe, ken-dong@163.com
  • Received Date: 26 January 2016

  • Virtual simulation technology has been widely proposed as a significant technological advance that can offer a novel form for education. Especially in the case of chemistry, virtual reality technology facilitates learning process surpassing major restrictions characterizing traditional educational methods. In this system, some popular softwares including 3Ds Max and Unity 3D are used to develop a fully immersive, interactive and three-dimensional simulation system of gas chromatography (GC). Three modules are included in this system. First module is the introduction of the instrument. Second module is a three-dimensional display of the structures, which are modeled by 3Ds Max and interacted by Unity 3D. The last module focuses on the simulation experiments, and this module is made by Unity 3D. All models created in this system are three-dimensional and the scenes are lifelike, so that all aspects of the instrument are presented to users clearly. Using this system to learn about the principles and structures of the instrument, users would feel that they were in a real laboratory and could master all related skills more easily. This system is not only a powerful tool to satisfy the need of instrument training and experimental teaching of chemistry, but also an excellent example of virtual simulation applied in chemistry.
  • 加载中
    1. [1]

      Wu J, Sun Y M, Lei W, et al.. Experimental Technology and Management, 2014, 15(10):1

    2. [2]

      Wu Z..[MS Dissertation]. Dalian:Dalian University of Technology, 2008 武真.[硕士学位论文]. 大连:大连理工大学, 2008

    3. [3]

      Li P, Mao C J, Xu J.. Research and Exploration in Laboratory, 2013, 32(11):5

    4. [4]

      Wang X J, Liu H J, Wei C W, et al.. Science & Technology Information, 2010(11):53

    5. [5]

      Georgiou J, Dimitropoulos K, Manitsaris A.. IJSS, 2007, 2(1):34

    6. [6]

      Dalgarno B, Bishop A G, Adlong W, et al.. Comput Educ, 2009, 53:853

    7. [7]

      Zimmerer C, Thiele S, Salzer R, et al.. Microchim Acta, 2003, 142(3):153

    8. [8]

      Morozov M, Tanakov A, Gerasimov A, et al..//IEEE, et al. Proceedings of the IEEE International Conference on Advanced Learning Technologies. Joensuu. Multimedia Systems Laboratory of Mari State Technical University Press, 2004:605

    9. [9]

      Khan F S, Irfan K, Razzaq S, et al.. LNE & CS, 2008, 2170(1):484

    10. [10]

      Waller J C, Foster N.. Comput Educ, 2000, 35:161

    11. [11]

      Koretsky M D, Amatore D, Barnes C, et al.. IEEE T Educ, 2008, 51(1):76

    12. [12]

      Yang Y, Xu Y Q, Yang Y L, et al.. Higher Agricultural Education, 2011(3):50

    13. [13]

      Li M, Wu X S.. University Education, 2013(10):29

    14. [14]

      Zhu Z..[MS Dissertation]. Wuhan:Central China Normal University, 2012

    15. [15]

      Zhang Y..[MS Dissertation]. Nanjing:Nanjing University of Science and Technology, 2014

  • 加载中
    1. [1]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    2. [2]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    3. [3]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

    4. [4]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    5. [5]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    9. [9]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    10. [10]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    11. [11]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    14. [14]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    18. [18]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    19. [19]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    20. [20]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

Metrics
  • PDF Downloads(0)
  • Abstract views(432)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return