Citation: ZHU Yinfang, JI Shunli, LI Shaohui, LI Cheng, ZHANG Feifang, LIANG Xinmiao. Analysis of carbapenems by hydrophilic interaction chromatography and its application[J]. Chinese Journal of Chromatography, ;2015, 33(9): 946-950. doi: 10.3724/SP.J.1123.2015.05005 shu

Analysis of carbapenems by hydrophilic interaction chromatography and its application

  • Corresponding author: ZHANG Feifang, 
  • Received Date: 7 May 2015

    Fund Project: 国家自然科学基金项目(21477037). (21477037)

  • A hydrophilic interaction chromatographic (HILIC) method has been developed for the determination of the four carbapenems in human urine and tap water. The parameters including acetonitrile amount, buffer concentration and pH on the retention behavior of the four carbapenem antibiotics on an XAmide column were explored and the possible HILIC retention mechanism was proposed. Good linearities were obtained over the mass concentration ranges of 0.1-250 mg/L for biapenem, doripenem and ertapenem with correlation coefficients (R2)=0.9999 and while it was 0.5-250 mg/L with R2=0.9998 for meropenem. The limits of quantification (LOQs) of all carbapenems were 0.1-0.5 mg/L. The spiked recoveries were within 100.4%-111.9% (RSD< 1%) for urine samples and 79.6%-107.4% (RSD< 5%) for tap water samples all at the spiked levels of 5 mg/L and 25 mg/L. The proposed method is accurate, sensitive, simple and suitable for the determination of the four carbapenems in human urine samples and tap water samples.
  • 加载中
    1. [1]

      [1] Zhanel G G, Wiebe R, Dilay L, et al. Drugs, 2007, 67(7): 1027  

    2. [2]

      [2] Li M Y, Wu H W. Herald of Medicine (李明艳, 吴洪文. 医药导报), 2014, 33(3): 352

    3. [3]

      [3] Xie Q E, Lin F L, Pang S Q. Journal of North Pharmacy (谢奇恩, 林福林, 庞素秋. 北方药学), 2011, 8(2): 51

    4. [4]

      [4] Cielecka-Piontek J, Michalska K, Zalewski P, et al. Curr Pharm Anal, 2011, 7(4): 213  

    5. [5]

      [5] Cielecka-Piontek J, Michalska K, Zalewski P, et al. Curr Anal Chem, 2012, 8(1): 91  

    6. [6]

      [6] Jia Y H, Xing W W. Chinese Journal of New Drugs (贾燕花, 邢维伟. 中国新药杂志), 2013, 22(11): 1285

    7. [7]

      [7] Lara F J, del Olmo-Iruela M, Cruces-Blanco C, et al. TrAC-Trends Anal Chem, 2012, 38: 52  

    8. [8]

      [8] Qin Y P, Mei Y J, Zhang L, et al. China Measurement & Test (秦永平, 梅亚君, 章丽, 等. 中国测试), 2015, 41(5): 54

    9. [9]

      [9] Yang Y, Li X, Xu B, et al. Central South Pharmacy (杨阳, 李昕, 徐兵, 等. 中南药学), 2014, 12(8): 761

    10. [10]

      [10] Kong W H, Ju H S, Wang X X, et al. Chinese Pharmaceutical Journal (孔维华, 鞠浩爽, 王晓雪, 等. 中国药学杂志), 2014, 49(14): 1247

    11. [11]

      [11] Legrand T, Chhun S, Rey E, et al. J Chromatogr B, 2008, 875(2): 551  

    12. [12]

      [12] Dailly E, Bouquié R, Deslandes G, et al. J Chromatogr B, 2011, 879(15/16): 1137

    13. [13]

      [13] Xia M, Hang T J, Zhang F, et al. J Pharm Biomed Anal, 2009, 49(4): 937  

    14. [14]

      [14] Wang X X, He J, Cui G, et al. China Pharmacy (王晓雪, 赫军, 崔刚, 等. 中国药房), 2014, 25(45): 4294

    15. [15]

      [15] Wang X X, Zhao T, He J, et al. China Pharmacy (王晓雪, 赵铁, 赫军, 等. 中国药房), 2014, 25(25): 2354

    16. [16]

      [16] Michalska K, Pajchel G, Tyski S. J Sep Sci, 2011, 34(4): 475  

    17. [17]

      [17] Xia D Y, Guo T, Wu Y H, et al. Chinese Pharmaceutical Journal (夏东亚, 郭涛, 吴云红, 等. 中国药学杂志), 2003, 38(5): 375

    18. [18]

      [18] Mendez A S L, Weisheimer V, Oppe T P, et al. J Pharm Biomed Anal, 2005, 37(4): 649  

    19. [19]

      [19] Alpert A J. J Chromatogr, 1990, 499(2): 177

    20. [20]

      [20] Kok M G M, Somsen G W, de Jong G J. Talanta, 2015: 1

    21. [21]

      [21] Wang X Y, Gao P, Xu G W. Chinese Journal of Chromatography (王希越, 高鹏, 许国旺. 色谱), 2014, 32(10): 1084

    22. [22]

      [22] El-Enany N, El-Sherbiny D, Abdelal A, et al. J Liq Chromatogr R T, 2012, 35(6): 819  

    23. [23]

      [23] Zhang H, Guo Z M, Zhang F F, et al. J Sep Sci, 2008, 31(9): 1623  

    24. [24]

      [24] Xing Q Q, Fu Q, Jin Y, et al. Chinese Journal of Chromatography (邢倩倩, 傅青, 金郁, 等. 色谱), 2014, 32(7): 767

    25. [25]

      [25] Guo H Y, Liu R H, Yang J J, et al. J Chromatogr A, 2012, 1223: 47  

    26. [26]

      [26] Xu Y, Xie W, Miller-Stein C M, et al. Rapid Commun Mass Spectrom, 2009, 23(14): 2195  

    27. [27]

      [27] Dolan J W, Lommen D C, Snyder L R. J Chromatogr A, 1990: 55

    28. [28]

      [28] Snyder L R, Poppe H. J Chromatogr A, 1980, 184(4): 363  

    29. [29]

      [29] Nikitas P, Pappa-Louisi A, Agrafiotou P. J Chromatogr A, 2002, 946: 33  

    30. [30]

      [30] Lu P Z, Lu X M, Li X Z, et al. Chinese Science Bulletin (卢佩章, 卢小明, 李秀珍, 等. 科学通报), 1982(19): 1175

    31. [31]

      [31] Lu P Z, Lu X M, Li X Z, et al. Chinese Science Bulletin (卢佩章, 卢小明, 李秀珍, 等. 科学通报), 1982(21): 1307

  • 加载中
    1. [1]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    2. [2]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    15. [15]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    16. [16]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    18. [18]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    19. [19]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(0)
  • Abstract views(657)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return