Citation: DING Jun, JIANG Li, FENG Yuqi. An automatic and sensitive method for the determination of endogenous brassinosteroids in plant tissues by an online trapping-in situ derivatization-ultra performance liquid chromatography-tandem mass spectrometry system[J]. Chinese Journal of Chromatography, ;2014, 32(10): 1094-1103. doi: 10.3724/SP.J.1123.2014.08010 shu

An automatic and sensitive method for the determination of endogenous brassinosteroids in plant tissues by an online trapping-in situ derivatization-ultra performance liquid chromatography-tandem mass spectrometry system

  • Corresponding author: FENG Yuqi, 
  • Received Date: 13 August 2014

    Fund Project: 国家自然科学基金项目(91017013,91217309). (91017013,91217309)

  • Brassinosteroids (BRs) are a class of naturally occurring phytohormones with polyhydroxy steroid structure, which regulate general plant growth and many physiological processes. The reported methods for BR analysis were complicated, and the detection sensitivity was relatively low. To realize the automatic analysis of trace BRs in limited plant tissues, an in-tube solid phase microextraction-ultra performance liquid chromatography-tandem mass spectrometry (SPME-UPLC-MS/MS) system was constructed based on two valves-two pumps. Using C18 PEEK column as the trapping column and 4-(dimethylamino)phenylboronic acid (4-DMAPBA) as the derivatization reagent, an on line trapping and in situ derivatization assay method of BRs was developed. BRs could be programmed to fulfill the procedures of injection, extraction, derivatization, LC separation and MS detection in the system. The detection limits of BRs were improved more than one order of magnitude by the online trapping and in situ derivatization techniques, thus endogenous BRs could be quantified in only 300 mg plant tissues.
  • 加载中
    1. [1]

      [1] Bajguz A, Tretyn A. Phytochem, 2003, 62(7): 1027  

    2. [2]

      [2] Mitchell J W, Mandava N, Worley J F, et al. Nature, 1970, 225(5237): 1065  

    3. [3]

      [3] Grove M D, Spencer G F, Rohwedder W K, et al. Nature, 1979, 281(5728): 216  

    4. [4]

      [4] Ashraf M, Akram N A, Arteca R N, et al. Crit Rev Plant Sci, 2010, 29(3): 162  

    5. [5]

      [5] Clouse S D, Sasse J M. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 427  

    6. [6]

      [6] Mertens R, Deus-Neumann B, Weiler E W. FEBS Lett, 1983, 160(1/2): 269

    7. [7]

      [7] Yokota T, Watanabe S, Ogino Y, et al. J Plant Growth Regul, 1990, 9(1/2/3/4): 151

    8. [8]

      [8] Swaczynová J, Novák O, Hauserová E, et al. J Plant Growth Regul, 2007, 26(1): 1  

    9. [9]

      [9] Bajguz A. J Plant Physiol, 2009, 166(17): 1946  

    10. [10]

      [10] Schrick K, Mayer U, Martin G, et al. Plant J, 2002, 31(1): 61  

    11. [11]

      [11] Khripach V A, Zhabinskii V N, Litvinovskaya R P, et al. Immunoassays of Brassinosteroids//Hayat S, Ahamd A. Brassinosteroids: A Class of Plant Hormone. Netherlands: Springer, 2011: 375.[2014-08-13]. http://link.springer.com/chapter/10.1007/978-94-007-0189-2_14

    12. [12]

      [12] Yokota T, Watanabe S, Ogino Y, et al. J Plant Growth Regul, 1990, 9(1): 151

    13. [13]

      [13] Horgen P A, Nakagawa C H, Irvin R T. Can J Biochem Cell Biol, 1984, 62(8): 715  

    14. [14]

      [14] Gupta D, Bhardwaj R, Nagar P K, et al. Plant Growth Regul, 2004, 43(2): 97  

    15. [15]

      [15] Takatsuto S, Ying B, Morisaki M, et al. J Chromatogr A, 1982, 239: 233  

    16. [16]

      [16] Sasse J M. Physiol Plant, 1997, 100(3): 696  

    17. [17]

      [17] Winter J, Schneider B, Meyenburg S, et al. Phytochem, 1999, 51(2): 237  

    18. [18]

      [18] Gamoh K, Takatsuto S. Anal Chim Acta, 1989, 222(1): 201  

    19. [19]

      [19] Gamoh K, Sawamoto H, Kakatsuto S, et al. J Chromatogr A, 1990, 515: 227  

    20. [20]

      [20] Svatos A, Antonchick A, Schneider B. Rapid Commun Mass Spectrom, 2004, 18(7): 816  

    21. [21]

      [21] Huo F, Wang X, Han Y, et al. Talanta, 2012, 99: 420  

    22. [22]

      [22] Wu Q, Wu D, Shen Z, et al. J Chromatogr A, 2013, 1297: 56  

    23. [23]

      [23] Xin P, Yan J, Fan J, et al. Plant Physiol, 2013, 162(4): 2056  

    24. [24]

      [24] Zhang H J, Wu J H, Feng Y Q. Journal of Analytical Science (张慧娟, 吴剑虹, 冯钰锜. 分析科学学报), 2008, 24(5): 589  

    25. [25]

      [25] Atapattu S N, Rosenfeld J M. J Chromatogr A, 2013, 1296: 204  

    26. [26]

      [26] Awan M A, Fleet I, Thomas C L P. Food Chem, 2008, 111(2): 462  

    27. [27]

      [27] Ito R, Kawaguchi M, Honda H, et al. J Chromatogr B, 2008, 872(1/2): 63

    28. [28]

      [28] Magi E, Di Carro M, Liscio C. Anal Bioanal Chem, 397(3): 1335

    29. [29]

      [29] Zhang H J, Huang J F, Lin B, et al. J Chromatogr A, 2007, 1160(1/2): 114

    30. [30]

      [30] Park Y K, Choi K, Ahmed A Y B H, et al. J Chromatogr A, 1217(20): 3357

    31. [31]

      [31] Salvador A, Moretton C, Piram A, et al. J Chromatogr A, 2007, 1145(1/2): 102

    32. [32]

      [32] Risticevic S, Niri V, Vuckovic D, et al. Anal Bioanal Chem, 2009, 393(3): 781  

    33. [33]

      [33] Fan Y, Feng Y Q, Da S L, et al. Anal Chim Acta, 2004, 523(2): 251  

    34. [34]

      [34] Nie J, Zhang M, Fan Y, et al. J Chromatogr B, 2005, 828(1/2): 62

    35. [35]

      [35] Liang B H, Wen Y, Lü Y N, et al. Journal of Instrumental Analysis (梁炳焕, 文毅, 吕永宁, 等. 分析测试学报), 2008, 27(1): 18

    36. [36]

      [36] Huang J F, Lin X H. Chinese Pharmaceutical Journal (黄京芳, 林幸华. 中国药学杂志), 2009, 44(12): 941

    37. [37]

      [37] Fan Y, Feng Y Q, Zhang J T, et al. J Chromatogr A, 2005, 1074(1/2): 9

    38. [38]

      [38] Wei F, Fan Y, Zhang M, et al. Electrophoresis, 2005, 26(16): 3141  

    39. [39]

      [39] Lin B, Zheng M M, Ng S C, et al. Electrophoresis, 2007, 28(15): 2771  

    40. [40]

      [40] Ding J, Mao L J, Wang S T, et al. Phytochem Anal, 2013, 24(4): 386  

    41. [41]

      [41] Springsteen G, Wang B H. Tetrahedron, 2002, 58(26): 5291  

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    5. [5]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    6. [6]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    7. [7]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    8. [8]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    10. [10]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    11. [11]

      Xiao Ma Junjie Wang Xin Chen Jingcheng Li Lihong Zhao Xueping Sun Shaojuan Cheng Fang Wang . Exploring Innovative Approaches to Chemistry Instructional Organization Driven by Artificial Intelligence. University Chemistry, 2025, 40(9): 99-106. doi: 10.12461/PKU.DXHX202410085

    12. [12]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    13. [13]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    17. [17]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    18. [18]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    19. [19]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(0)
  • Abstract views(482)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return