Citation: LI Qinran, YANG Kaiguang, LI Senwu, LIU Jianxi, ZHANG Lihua, LIANG Zhen, ZHANG Yukui. Preparation of epitope imprinted particles for transferrin recognition by reversible addition fragmentation chain transfer strategy[J]. Chinese Journal of Chromatography, ;2014, 32(10): 1029-1033. doi: 10.3724/SP.J.1123.2014.06029 shu

Preparation of epitope imprinted particles for transferrin recognition by reversible addition fragmentation chain transfer strategy

  • Corresponding author: ZHANG Lihua, 
  • Received Date: 21 June 2014

    Fund Project: 国家自然科学基金项目(21375128) (21375128)国家高科技研究计划(“863”计划)项目(2012AA020202). (“863”计划)项目(2012AA020202)

  • A kind of novel epitope surface imprinted particles was prepared by the reversible addition fragmentation chain transfer (RAFT) strategy. The epitope of transferrin, N-terminal peptide of the protein with nine amino acid residues, was chosen as the template and immobilized with covalent interaction on the surface of silica particles through the truss arm glutaraldehyde. The living/controlled polymerization was initialed by 2,2'-azobisisobutyronitrile (AIBN) at 70 ℃ in the solution of N,N-dimethylformamide, with the regulation by triothioester agent 2-(dodecylthiocarbonothioylthio)-2-methylpropanoic acid. Methacrylic acid and 2-hydroxyethyl methacrylate were chosen as the functional monomers and N,N-methylenebisacrylamide was chosen as the cross-linker in this polymerization. For this material, the binding capacity of the nine residue peptide could reach 2.36 mg/g with the imprinting factor (IF) of 1.89, while that for transferrin could reach 4.98 mg/g with IF of 1.61. The equilibrium could be achieved in 120 min for the transferrin recognition. In multi-protein competitive recognition, the imprinted factor of transferrin was the highest in the mixture of transferrin and other competitive proteins, such as cytochrome C and β-lactoglobulin. The results indicated that these epitope surface imprinted particles with RAFT strategy could recognize not only the nine residue peptide but also the transferrin with good selectivity, high binding capacity and fast mass transfer.
  • 加载中
    1. [1]

      [1] Xia Y, Zhang L, Zhao E C, et al. Chinese Journal of Chromatography (夏英, 张澜, 赵尔成, 等. 色谱), 2014, 32(2): 117

    2. [2]

      [2] Chen F F, Shi Y P. Chinese Journal of Chromatography (陈方方, 师彦平. 色谱), 2013, 31(7): 626

    3. [3]

      [3] Bossi A M, Bonini F, Turner, A P F, et al. Biosens Bioelectron, 2007, 22(6): 1131  

    4. [4]

      [4] Cutivet A, Schembri C, Kovensky J, et al. J Am Chem Soc, 2009, 131(41): 14699  

    5. [5]

      [5] Liu J X, Deng Q L, Yang K G, et al. J Sep Sci, 2010, 33(17): 2757

    6. [6]

      [6] Cai D, Ren L, Zhao H Z, et al. Nat Nanotechnol, 2010, 5(8): 597  

    7. [7]

      [7] Turner N W, Jeans C W, Brain K R, et al. Biotechnol Progr, 2006, 22(6): 1474  

    8. [8]

      [8] Yang K G, Zhang L H, Liang Z, et al. Anal Bioanal Chem, 2012, 403(8): 2173  

    9. [9]

      [9] Nishino H, Huang C S, Shea K J. Angew Chem Int Ed, 2006, 45(15): 2392  

    10. [10]

      [10] Whitcombe M J, Chianella I, Larcombe L, et al. Chem Soc Rev, 2011, 40(3): 1547  

    11. [11]

      [11] Rachkov A, Minour N. J Chromatogr A, 2000, 889(1): 111

    12. [12]

      [12] Rachkov A, Minour N. Biochim Biophys Acta, 2001, 1544(1): 255

    13. [13]

      [13] Lu C H, Zhang Y, Tang S F, et al. Biosens Bioelectron, 2012, 31(1): 439  

    14. [14]

      [14] Bossi A M, Sharma P S, Montana L, et al. Anal Chem, 2012, 84(9): 4036  

    15. [15]

      [15] Yang Y Q, He X W, Wang Y Z, et al. Biosens Bioelectron, 2014, 54: 266  

    16. [16]

      [16] Chiefari J, Chong Y K, Ercole F, et al. Macromolecules, 1998, 31(16): 5559  

    17. [17]

      [17] Moad J, Rizzardo E, Tang S H, et al. Aust J Chem, 2006, 59(10): 669  

    18. [18]

      [18] Fu G D, Xu L Q, Yao F, et al. ACS Appl Mater Interfaces, 2009, 1(2): 239  

    19. [19]

      [19] Moraes J, Ohno K, Maschmeyer T, et al. Chem Commun, 2013, 49(80): 9077  

    20. [20]

      [20] Yang K, Huang X Y, Zhu M, et al. ACS Appl Mater Interfaces, 2014, 6(3): 1812  

    21. [21]

      [21] Ma Y, Pan G Q, Zhang Y, et al. Angew Chem Int Ed, 2013, 52(5): 1511  

    22. [22]

      [22] Halhalli M R, Schillinger E, Aureliano C S A, et al. Chem Mater, 2012, 24(15): 2909  

  • 加载中
    1. [1]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    4. [4]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Yujie WANGLaobang WANGZheng ZHANGQi LIUJianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    12. [12]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-0. doi: 10.3866/PKU.WHXB202309027

    13. [13]

      Limin Zhang Mengmeng Liu Yang Tian . Size Determines Performance: A Novel Experimental Design for Voltammetric Teaching at Microelectrode and Glassy Carbon Electrode. University Chemistry, 2025, 40(11): 281-288. doi: 10.12461/PKU.DXHX202412047

    14. [14]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    18. [18]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    19. [19]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    20. [20]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

Metrics
  • PDF Downloads(0)
  • Abstract views(462)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return